找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Learning with Limited and Noisy Data; Second International Zhiyun Xue,Sameer Antani,Zhaohui Liang Conference proceedings 2023

[復(fù)制鏈接]
樓主: 投降
41#
發(fā)表于 2025-3-28 15:47:53 | 只看該作者
42#
發(fā)表于 2025-3-28 20:35:40 | 只看該作者
ScribSD: Scribble-Supervised Fetal MRI Segmentation Based on?Simultaneous Feature and?Prediction Sel. However, obtaining a large amount of high-quality manually annotated fetal MRI is time-consuming and requires specialized knowledge, which hinders the widespread application that relies on such data to train a model with good segmentation performance. Using weak annotations such as scribbles can s
43#
發(fā)表于 2025-3-28 23:12:58 | 只看該作者
Label-Efficient Contrastive Learning-Based Model for?Nuclei Detection and?Classification in?3D Cardiing-based methods requires a large amount of pixel-wise annotated data, which is time-consuming and labor-intensive, especially in 3D images. An alternative approach is to adapt weak-annotation methods, such as labeling each nucleus with a point, but this method does not extend from 2D histopatholog
44#
發(fā)表于 2025-3-29 04:41:02 | 只看該作者
45#
發(fā)表于 2025-3-29 08:37:02 | 只看該作者
Dual-Domain Iterative Network with?Adaptive Data Consistency for?Joint Denoising and?Few-Angle Recons. Reducing the dose of the injected tracer is essential for lowering the patient’s radiation exposure, but it will lead to increased image noise. Additionally, the latest dedicated cardiac SPECT scanners typically acquire projections in fewer angles using fewer detectors to reduce hardware expenses
46#
發(fā)表于 2025-3-29 12:59:13 | 只看該作者
47#
發(fā)表于 2025-3-29 17:03:47 | 只看該作者
48#
發(fā)表于 2025-3-29 21:09:21 | 只看該作者
49#
發(fā)表于 2025-3-30 03:13:50 | 只看該作者
Decoupled Conditional Contrastive Learning with?Variable Metadata for?Prostate Lesion Detectiondetection. The Prostate Imaging Reporting and Data System (PI-RADS) has standardized interpretation of prostate MRI by defining a score for lesion malignancy. PI-RADS data is readily available from radiology reports but is subject to high inter-reports variability. We propose a new contrastive loss
50#
發(fā)表于 2025-3-30 04:33:36 | 只看該作者
FBA-Net: Foreground and?Background Aware Contrastive Learning for?Semi-Supervised Atrium Segmentatiol annotation is time-consuming and requires specialized expertise. Semi-supervised segmentation methods that leverage both labeled and unlabeled data have shown promise, with contrastive learning emerging as a particularly effective approach. In this paper, we propose a contrastive learning strategy
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 13:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
普兰店市| 台东市| 永吉县| 怀集县| 阿拉善盟| 三台县| 沧州市| 通化县| 关岭| 龙游县| 田阳县| 镇平县| 乐陵市| 淮安市| 西青区| 淮北市| 阳城县| 高雄市| 米易县| 七台河市| 达拉特旗| 西贡区| 通许县| 四子王旗| 岳池县| 庄河市| 西乡县| 平阳县| 临猗县| 新干县| 离岛区| 海兴县| 新民市| 庆元县| 平安县| 陈巴尔虎旗| 思南县| 乌审旗| 林州市| 遂宁市| 吴川市|