找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Learning with Limited and Noisy Data; Second International Zhiyun Xue,Sameer Antani,Zhaohui Liang Conference proceedings 2023

[復(fù)制鏈接]
樓主: 投降
11#
發(fā)表于 2025-3-23 13:11:30 | 只看該作者
12#
發(fā)表于 2025-3-23 14:58:39 | 只看該作者
13#
發(fā)表于 2025-3-23 19:36:40 | 只看該作者
Label-Efficient Contrastive Learning-Based Model for?Nuclei Detection and?Classification in?3D Cardim Intensity Projection (MIP) to convert immunofluorescent images with multiple slices to 2D images, which can cause signals from different z-stacks to falsely appear associated with each other. To overcome this, we devised an Extended Maximum Intensity Projection (EMIP) approach that addresses issue
14#
發(fā)表于 2025-3-23 22:43:47 | 只看該作者
Affordable Graph Neural Network Framework Using Topological Graph Contractionmory-efficient GNN training framework (C-QSIGN), which incorporates our proposed contraction method along with several other state-of-the-art (SOTA) methods. Furthermore, we benchmarked our proposed model performance in terms of prediction quality and GPU usage against other SOTA methods. We show th
15#
發(fā)表于 2025-3-24 05:03:37 | 只看該作者
16#
發(fā)表于 2025-3-24 09:45:49 | 只看該作者
A Multitask Framework for?Label Refinement and?Lesion Segmentation in?Clinical Brain ImagingD scans. In extensive experiments on both proprietary and public clinical brain imaging datasets, we demonstrate that our end-to-end framework offers strong performance improvements over prevailing baselines on both label refinement and lesion segmentation. Our proposed framework maintains performan
17#
發(fā)表于 2025-3-24 11:28:12 | 只看該作者
18#
發(fā)表于 2025-3-24 17:20:01 | 只看該作者
Feasibility of?Universal Anomaly Detection Without Knowing the?Abnormality in?Medical Imagesnomaly detection model during the validation phase using only normal images, and (3) proposing a simple decision-level ensemble method to leverage the advantage of different kinds of anomaly detection without knowing the abnormality. The results of our experiments indicate that none of the evaluated
19#
發(fā)表于 2025-3-24 19:20:43 | 只看該作者
20#
發(fā)表于 2025-3-25 00:17:05 | 只看該作者
Masked Image Modeling for?Label-Efficient Segmentation in?Two-Photon Excitation Microscopy of intensity and foreground structures, and inter-channel correlations that are specific to microscopy images. We show that these methods are effective for generating representations of TPEM images, and identify novel insights on how MIM can be modified to yield more salient image representations f
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-3 04:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通许县| 鄢陵县| 华阴市| 文安县| 英吉沙县| 南木林县| 孟津县| 南开区| 耒阳市| 忻城县| 珲春市| 滦平县| 邻水| 广州市| 宽城| 精河县| 汉沽区| 临桂县| 满城县| 商南县| 高平市| 内黄县| 施甸县| 渝北区| 凭祥市| 丹棱县| 岑溪市| 德江县| 厦门市| 溆浦县| 海兴县| 万荣县| 衡水市| 西畴县| 青铜峡市| 辰溪县| 湟源县| 巫山县| 宝应县| 台湾省| 镇坪县|