找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016; 19th International C Sebastien Ourselin,Leo Joskowicz,William Wel

[復(fù)制鏈接]
樓主: counterfeit
41#
發(fā)表于 2025-3-28 15:32:01 | 只看該作者
42#
發(fā)表于 2025-3-28 19:35:25 | 只看該作者
43#
發(fā)表于 2025-3-28 22:54:58 | 只看該作者
44#
發(fā)表于 2025-3-29 04:35:09 | 只看該作者
Outcome Prediction for Patient with High-Grade Gliomas from Brain Functional and Structural Networksonance imaging (rs-fMRI)). Therefore, integrating connectomics information in outcome prediction could improve prediction accuracy. To this end, we unprecedentedly devise a machine learning-based HGG prediction framework that can effectively extract valuable features from complex human brain connec
45#
發(fā)表于 2025-3-29 09:06:55 | 只看該作者
Mammographic Mass Segmentation with Online Learned Shape and Appearance Priors,proach is extensively validated on a large dataset constructed on DDSM. Results demonstrate that our online learned priors lead to substantial improvement in mass segmentation accuracy, compared with previous systems.
46#
發(fā)表于 2025-3-29 11:32:17 | 只看該作者
47#
發(fā)表于 2025-3-29 18:05:31 | 只看該作者
48#
發(fā)表于 2025-3-29 21:47:21 | 只看該作者
Robust Cancer Treatment Outcome Prediction Dealing with Small-Sized and Imbalanced Data from FDG-PEe proposed method aims to reduce the imprecision and overlaps between different classes in the selected feature subspace, thus finally improving the prediction accuracy. It has been evaluated by two clinical datasets, showing good performance.
49#
發(fā)表于 2025-3-30 01:08:29 | 只看該作者
,Structured Sparse Kernel Learning for Imaging Genetics Based Alzheimer’s Disease Diagnosis,lzheimer’s Disease Neuroimaging Initiative (ADNI) database. The effectiveness of our method is demonstrated by both the clearly improved prediction accuracy and the discovered brain regions and SNPs relevant to AD.
50#
發(fā)表于 2025-3-30 05:37:13 | 只看該作者
,Semi-supervised Hierarchical Multimodal Feature and Sample Selection for Alzheimer’s Disease Diagno we utilize both labeled and unlabeled data in the learning process, making our method semi-supervised. The finally selected features and samples are then used to train support vector machine (SVM) based classification models. Our method is evaluated on 702 subjects from the Alzheimer’s Disease Neur
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 01:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
根河市| 资兴市| 西林县| 连州市| 阳高县| 应用必备| 左权县| 左云县| 海晏县| 化德县| 新安县| 太仆寺旗| 天镇县| 荆州市| 三江| 阳谷县| 泾阳县| 安阳市| 永仁县| 慈利县| 五家渠市| 舟山市| 乐东| 沙河市| 磐石市| 普格县| 宜兰市| 台安县| 垦利县| 新兴县| 黄大仙区| 浑源县| 丹东市| 北安市| 鄂州市| 修武县| 怀集县| 思南县| 崇礼县| 江源县| 宣化县|