找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer Assisted Intervention ? MICCAI 2017; 20th International C Maxime Descoteaux,Lena Maier-Hein,Simon Duch

[復(fù)制鏈接]
51#
發(fā)表于 2025-3-30 08:53:27 | 只看該作者
Deep Multi-task Multi-channel Learning for Joint Classification and Regression of Brain Statusmagnetic resonance imaging (MRI) data, since these two tasks are highly correlated. Although several joint learning models have been developed, most existing methods focus on using human-engineered features extracted from MRI data. Due to the possible heterogeneous property between human-engineered
52#
發(fā)表于 2025-3-30 12:26:04 | 只看該作者
Nonlinear Feature Space Transformation to Improve the Prediction of MCI to AD Conversion to target the disease process early. In this paper, we present a novel nonlinear feature transformation scheme to improve the prediction of MCI-AD conversion through semi-supervised learning. Utilizing Laplacian SVM (LapSVM) as a host classifier, the proposed method learns a smooth spatially varyin
53#
發(fā)表于 2025-3-30 16:38:41 | 只看該作者
54#
發(fā)表于 2025-3-30 22:53:00 | 只看該作者
Latent Processes Governing Neuroanatomical Change in Aging and Dementiamodate neural systems with high susceptibility to deleterious factors. Due to the overlap, the separation between aging and pathological processes is challenging when analyzing brain structures independently. We propose to identify multivariate latent processes that govern cross-sectional and longit
55#
發(fā)表于 2025-3-31 04:18:41 | 只看該作者
A Multi-armed Bandit to Smartly Select a Training Set from Big Medical Datadifferent datasets. Simply including all the data does not only incur high processing costs but can even harm the prediction. We formulate the smart and efficient selection of a training dataset from big medical image data as a multi-armed bandit problem, solved by Thompson sampling. Our method assu
56#
發(fā)表于 2025-3-31 06:42:53 | 只看該作者
57#
發(fā)表于 2025-3-31 12:19:31 | 只看該作者
58#
發(fā)表于 2025-3-31 14:32:23 | 只看該作者
59#
發(fā)表于 2025-3-31 20:26:37 | 只看該作者
Maximum Mean Discrepancy Based Multiple Kernel Learning for Incomplete Multimodality Neuroimaging Dalow-rank matrix completion (.imputing the missing values and unknown labels simultaneously) and multi-task learning (.defining one regression task for each combination of modalities and then learning them jointly), are unable to model the complex data-to-label relationship in AD diagnosis and also i
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 00:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹤庆县| 安仁县| 青铜峡市| 连平县| 宁城县| 盱眙县| 赤壁市| 灵宝市| 白城市| 浦江县| 壤塘县| 德惠市| 二连浩特市| 玉树县| 临湘市| 健康| 会昌县| 海原县| 克什克腾旗| 三江| 正蓝旗| 永州市| 平顶山市| 托克逊县| 明光市| 赤水市| 长武县| 吉木萨尔县| 随州市| 宁阳县| 浏阳市| 额尔古纳市| 伊吾县| 莎车县| 汾西县| 五寨县| 营口市| 横山县| 吉木萨尔县| 玛沁县| 恩施市|