找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023; 26th International C Hayit Greenspan,Anant Madabhushi,Russell Tay

[復(fù)制鏈接]
樓主: 厭倦了我
41#
發(fā)表于 2025-3-28 16:19:31 | 只看該作者
Transformer-Based Annotation Bias-Aware Medical Image SegmentationRecently, researchers have suggested that such bias is the combination of the annotator preference and stochastic error, which are modeled by convolution blocks located after decoder and pixel-wise independent Gaussian distribution, respectively. It is unlikely that convolution blocks can effectivel
42#
發(fā)表于 2025-3-28 21:52:41 | 只看該作者
43#
發(fā)表于 2025-3-28 23:03:57 | 只看該作者
A General Stitching Solution for?Whole-Brain 3D Nuclei Instance Segmentation from?Microscopy Imagesteractions within the larger tissue environment in the brain. Despite the significant progress in achieving accurate NIS within small image stacks using cutting-edge machine learning techniques, there has been a lack of effort to extend this approach towards whole-brain NIS from light-sheet microsco
44#
發(fā)表于 2025-3-29 04:43:37 | 只看該作者
Adult-Like Phase and?Multi-scale Assistance for?Isointense Infant Brain Tissue Segmentationtomatically segment the brain tissues of a 6-month-old infant (isointense phase), even for manual labeling, due to inherent ongoing myelination during the first postnatal year. The intensity contrast between gray matter and white matter is extremely low in isointense MRI data. To resolve this proble
45#
發(fā)表于 2025-3-29 08:10:48 | 只看該作者
46#
發(fā)表于 2025-3-29 12:01:57 | 只看該作者
47#
發(fā)表于 2025-3-29 17:22:41 | 只看該作者
48#
發(fā)表于 2025-3-29 22:20:41 | 只看該作者
Diffusion Kinetic Model for?Breast Cancer Segmentation in?Incomplete DCE-MRIal kinetic characteristics and deep learning to improve segmentation performance. However, the difficulty in accessing complete temporal sequences, especially post-contrast images, hinders segmentation performance, generalization ability and clinical application of existing methods. In this work, we
49#
發(fā)表于 2025-3-30 00:15:56 | 只看該作者
CAS-Net: Cross-View Aligned Segmentation by?Graph Representation of?Kneesple views with stacked 2D slices, ensuring diagnosis accuracy while saving scanning time. However, obtaining fine 3D knee segmentation from multi-view 2D scans is challenging, which is yet necessary for morphological analysis. Moreover, radiologists need to annotate the knee segmentation in multiple
50#
發(fā)表于 2025-3-30 04:49:50 | 只看該作者
One-Shot Traumatic Brain Segmentation with?Adversarial Training and?Uncertainty Rectificationimited by the lack of annotated data. One-shot segmentation based on learned transformations (OSSLT) has emerged as a powerful tool to overcome the limitations of insufficient training samples, which involves learning spatial and appearance transformations to perform data augmentation, and learning
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 12:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邹平县| 武陟县| 调兵山市| 曲水县| 金溪县| 隆昌县| 安达市| 汤原县| 从江县| 吉木萨尔县| 鄱阳县| 和硕县| 嵩明县| 浦东新区| 彰化县| 巴南区| 赤壁市| 农安县| 酒泉市| 渝北区| 营山县| 军事| 长岛县| 云安县| 梅河口市| 延安市| 宁津县| 南和县| 茶陵县| 武安市| 博兴县| 始兴县| 司法| 舞阳县| 金乡县| 汝州市| 观塘区| 温泉县| 石景山区| 湖南省| 武定县|