找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2022; 25th International C Linwei Wang,Qi Dou,Shuo Li Conference procee

[復(fù)制鏈接]
查看: 11640|回復(fù): 63
樓主
發(fā)表于 2025-3-21 20:06:24 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2022
副標(biāo)題25th International C
編輯Linwei Wang,Qi Dou,Shuo Li
視頻videohttp://file.papertrans.cn/630/629218/629218.mp4
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2022; 25th International C Linwei Wang,Qi Dou,Shuo Li Conference procee
描述The eight-volume set LNCS 13431, 13432, 13433, 13434, 13435, 13436, 13437, and 13438 constitutes the refereed proceedings of the 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022, which was held in Singapore in September 2022..The 574 revised full papers presented were carefully reviewed and selected from 1831 submissions in a double-blind review process. The papers are organized in the following topical sections:.Part I: Brain development and atlases; DWI and tractography; functional brain networks; neuroimaging; heart and lung imaging; dermatology;.Part II: Computational (integrative) pathology; computational anatomy and physiology; ophthalmology; fetal imaging;.Part III: Breast imaging; colonoscopy; computer aided diagnosis;.Part IV: Microscopic image analysis; positron emission tomography; ultrasound imaging; video data analysis; image segmentation I;.Part V: Image segmentation II; integration of imaging with non-imaging biomarkers;.Part VI: Image registration; image reconstruction;.Part VII: Image-Guided interventions and surgery; outcome and disease prediction; surgical data science; surgical planning and simulation; mach
出版日期Conference proceedings 2022
關(guān)鍵詞artificial intelligence; bioinformatics; computer vision; decision support systems; image analysis; image
版次1
doihttps://doi.org/10.1007/978-3-031-16443-9
isbn_softcover978-3-031-16442-2
isbn_ebook978-3-031-16443-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2022影響因子(影響力)




書(shū)目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2022影響因子(影響力)學(xué)科排名




書(shū)目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2022網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2022網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2022被引頻次




書(shū)目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2022被引頻次學(xué)科排名




書(shū)目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2022年度引用




書(shū)目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2022年度引用學(xué)科排名




書(shū)目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2022讀者反饋




書(shū)目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2022讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:10:24 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:00:52 | 只看該作者
UNeXt: MLP-Based Rapid Medical Image Segmentation Network be effectively adopted for rapid image segmentation in point-of-care applications as they are parameter-heavy, computationally complex and slow to use. To this end, we propose UNeXt which is a Convolutional multilayer perceptron (MLP) based network for image segmentation. We design UNeXt in an effe
地板
發(fā)表于 2025-3-22 06:19:19 | 只看該作者
Exploring Smoothness and Class-Separation for Semi-supervised Medical Image Segmentationred pixels near the adhesive edges or in the low-contrast regions. To address the issues, we advocate to firstly constrain the consistency of pixels with and without strong perturbations to apply a sufficient smoothness constraint and further encourage the class-level separation to exploit the low-e
5#
發(fā)表于 2025-3-22 11:51:40 | 只看該作者
Uncertainty-Guided Lung Nodule Segmentation with Feature-Aware Attention studies choose a single annotation as the learning target by default, but they waste valuable information of consensus or disagreements ingrained in the multiple annotations. This paper proposes an Uncertainty-Guided Segmentation Network (UGS-Net), which learns the rich visual features from the reg
6#
發(fā)表于 2025-3-22 13:15:20 | 只看該作者
Thoracic Lymph Node Segmentation in?CT Imaging via?Lymph Node Station Stratification and?Size Encodiology and oncology workflows. The high demanding of clinical expertise and prohibitive laboring cost motivate the automated approaches. Previous works focus on extracting effective LN imaging features and/or exploiting the anatomical priors to help LN segmentation. However, the performance in genera
7#
發(fā)表于 2025-3-22 19:52:28 | 只看該作者
8#
發(fā)表于 2025-3-23 00:39:59 | 只看該作者
9#
發(fā)表于 2025-3-23 02:56:27 | 只看該作者
Stroke Lesion Segmentation from?Low-Quality and?Few-Shot MRIs via?Similarity-Weighted Self-ensemblinsegmentation methods have the great potential to improve the medical resource imbalance and reduce stroke risk in these countries, existing segmentation studies are difficult to be deployed in these low-resource settings because they have such high requirements for the data amount (plenty-shot) and
10#
發(fā)表于 2025-3-23 08:54:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 21:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玉树县| 荃湾区| 许昌县| 调兵山市| 景东| 张家界市| 古浪县| 仲巴县| 龙游县| 左云县| 沛县| 古交市| 平乡县| 临西县| 扶绥县| 临清市| 泰州市| 杨浦区| 高唐县| 宜良县| 邵武市| 扎鲁特旗| 黔南| 平果县| 茌平县| 修文县| 崇仁县| 花莲县| 鹤山市| 沙河市| 华容县| 都安| 永安市| 顺义区| 将乐县| 绥阳县| 石城县| 甘孜县| 庆阳市| 烟台市| 东至县|