找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2022; 25th International C Linwei Wang,Qi Dou,Shuo Li Conference procee

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 12:54:41 | 只看該作者
12#
發(fā)表于 2025-3-23 15:18:12 | 只看該作者
13#
發(fā)表于 2025-3-23 20:16:09 | 只看該作者
S,R: Self-supervised Spectral Regression for?Hyperspectral Histopathology Image Classificationd is restored by using the learned coefficients to reweight the remaining bands. Two pre-text tasks are designed: (1) S.R-CR, which regresses the linear coefficients, so that the pre-trained model understands the inherent structures of HSIs and the pathological characteristics of different morpholog
14#
發(fā)表于 2025-3-24 00:51:47 | 只看該作者
Distilling Knowledge from?Topological Representations for?Pathological Complete Response Predictionrior performance by increasing the accuracy from previously 85.1% to 90.5% in the pCR prediction and reducing the topological computation time by about 66% on a public dataset for breast DCE-MRI images.
15#
發(fā)表于 2025-3-24 02:26:13 | 只看該作者
SETMIL: Spatial Encoding Transformer-Based Multiple Instance Learning for?Pathological Image Analysincoding design in the aggregating module further improves the context-information-encoding ability of SETMIL. (4) SETMIL designs a transformer-based pyramid multi-scale fusion module to comprehensively encode the information with different granularity using multi-scale receptive fields and make the
16#
發(fā)表于 2025-3-24 06:42:01 | 只看該作者
Clinical-Realistic Annotation for?Histopathology Images with?Probabilistic Semi-supervision: A Worstkle the challenge, we 1) proposed a different annotation strategy to image data with different levels of disease severity, 2) combined semi- and self-supervised representation learning with probabilistic weakly supervision to make use of the proposed annotations, and 3) illustrated its effectiveness
17#
發(fā)表于 2025-3-24 14:46:17 | 只看該作者
End-to-End Learning for?Image-Based Detection of?Molecular Alterations in?Digital Pathologycer cases from The Cancer Genome Atlas. Results reach AUC scores of up to 94% and are shown to be competitive with state of the art two-stage pipelines. We believe our approach can facilitate future research in digital pathology and contribute to solve a large range of problems around the prediction
18#
發(fā)表于 2025-3-24 18:52:16 | 只看該作者
S5CL: Unifying Fully-Supervised, Self-supervised, and?Semi-supervised Learning Through Hierarchical rk on two public histopathological datasets show strong improvements in the case of sparse labels: for a H &E-stained colorectal cancer dataset, the accuracy increases by up to . compared to supervised cross-entropy loss; for a highly imbalanced dataset of single white blood cells from leukemia pati
19#
發(fā)表于 2025-3-24 21:58:21 | 只看該作者
20#
發(fā)表于 2025-3-25 01:41:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
达州市| 郧西县| 肥东县| 弥渡县| 巴塘县| 咸阳市| 平武县| 鄢陵县| 汝南县| 嘉祥县| 双牌县| 兖州市| 普格县| 山东| 涟水县| 江西省| 穆棱市| 壶关县| 理塘县| 富源县| 韶山市| 镇宁| 南宫市| 黑水县| 黄骅市| 开阳县| 唐海县| 资兴市| 柞水县| 木兰县| 永德县| 开远市| 乌恰县| 池州市| 沐川县| 上思县| 剑川县| 威信县| 白银市| 柳林县| 建德市|