找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021; 24th International C Marleen de Bruijne,Philippe C. Cattin,Caroli

[復(fù)制鏈接]
樓主: proptosis
51#
發(fā)表于 2025-3-30 10:37:33 | 只看該作者
52#
發(fā)表于 2025-3-30 14:50:08 | 只看該作者
53#
發(fā)表于 2025-3-30 16:55:22 | 只看該作者
RV-GAN: Segmenting Retinal Vascular Structure in Fundus Photographs Using a Novel Multi-scale Generatures from the discriminator’s decoder over the encoder. Doing so combined with the fact that the discriminator’s decoder attempts to determine real or fake images at the pixel level better preserves macro and microvascular structure. By combining reconstruction and weighted feature matching loss, t
54#
發(fā)表于 2025-3-31 00:09:04 | 只看該作者
MIL-VT: Multiple Instance Learning Enhanced Vision Transformer for Fundus Image Classificationniently attached to the Vision Transformer in a plug-and-play manner and effectively enhances the model performance for the downstream fundus image classification tasks. The proposed MIL-VT framework achieves superior performance over CNN models on two publicly available datasets when being trained
55#
發(fā)表于 2025-3-31 01:59:13 | 只看該作者
56#
發(fā)表于 2025-3-31 08:34:25 | 只看該作者
BSDA-Net: A Boundary Shape and Distance Aware Joint Learning Framework for Segmenting and Classifyinentation performance, resulting in more accurate FAZ contours and fewer outliers. Moreover, both low-level and high-level features from the aforementioned three branches, including shape, size, boundary, and signed directional distance map of FAZ, are fused hierarchically with features from the diag
57#
發(fā)表于 2025-3-31 11:30:24 | 只看該作者
58#
發(fā)表于 2025-3-31 13:36:45 | 只看該作者
59#
發(fā)表于 2025-3-31 21:30:32 | 只看該作者
Nuclei Grading of Clear Cell Renal Cell Carcinoma in Histopathological Image by?Composite High-Resol-category classification tasks that are leaned by two newly designed high-resolution feature extractors (HRFEs). The two HRFEs share the same backbone encoder with W-Net by a composite connection so that meaningful features for the segmentation task can be inherited to the classification task. Last,
60#
發(fā)表于 2025-4-1 01:25:57 | 只看該作者
Prototypical Models for Classifying High-Risk Atypical Breast Lesionsing clinically relevant explanations to its recommendations, thus it is intrinsically explainable, which is a major contribution of this work. Our experiments also show state-of-the-art performance in recall compared to the latest deep-learning based graph neural networks (GNNs).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 05:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昭觉县| 白朗县| 尉犁县| 嘉禾县| 普定县| 文登市| 南和县| 巨鹿县| 红安县| 高台县| 宝兴县| 敦化市| 西盟| 潮安县| 东光县| 陆河县| 张北县| 昆明市| 梨树县| 临朐县| 眉山市| 甘谷县| 博野县| 永济市| 绍兴县| 阳江市| 全椒县| 清丰县| 义马市| 灵璧县| 余干县| 岳普湖县| 吉安县| 新丰县| 广水市| 卫辉市| 安义县| 定陶县| 虞城县| 柳河县| 右玉县|