找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021; 24th International C Marleen de Bruijne,Philippe C. Cattin,Caroli

[復(fù)制鏈接]
樓主: proptosis
51#
發(fā)表于 2025-3-30 10:37:33 | 只看該作者
52#
發(fā)表于 2025-3-30 14:50:08 | 只看該作者
53#
發(fā)表于 2025-3-30 16:55:22 | 只看該作者
RV-GAN: Segmenting Retinal Vascular Structure in Fundus Photographs Using a Novel Multi-scale Generatures from the discriminator’s decoder over the encoder. Doing so combined with the fact that the discriminator’s decoder attempts to determine real or fake images at the pixel level better preserves macro and microvascular structure. By combining reconstruction and weighted feature matching loss, t
54#
發(fā)表于 2025-3-31 00:09:04 | 只看該作者
MIL-VT: Multiple Instance Learning Enhanced Vision Transformer for Fundus Image Classificationniently attached to the Vision Transformer in a plug-and-play manner and effectively enhances the model performance for the downstream fundus image classification tasks. The proposed MIL-VT framework achieves superior performance over CNN models on two publicly available datasets when being trained
55#
發(fā)表于 2025-3-31 01:59:13 | 只看該作者
56#
發(fā)表于 2025-3-31 08:34:25 | 只看該作者
BSDA-Net: A Boundary Shape and Distance Aware Joint Learning Framework for Segmenting and Classifyinentation performance, resulting in more accurate FAZ contours and fewer outliers. Moreover, both low-level and high-level features from the aforementioned three branches, including shape, size, boundary, and signed directional distance map of FAZ, are fused hierarchically with features from the diag
57#
發(fā)表于 2025-3-31 11:30:24 | 只看該作者
58#
發(fā)表于 2025-3-31 13:36:45 | 只看該作者
59#
發(fā)表于 2025-3-31 21:30:32 | 只看該作者
Nuclei Grading of Clear Cell Renal Cell Carcinoma in Histopathological Image by?Composite High-Resol-category classification tasks that are leaned by two newly designed high-resolution feature extractors (HRFEs). The two HRFEs share the same backbone encoder with W-Net by a composite connection so that meaningful features for the segmentation task can be inherited to the classification task. Last,
60#
發(fā)表于 2025-4-1 01:25:57 | 只看該作者
Prototypical Models for Classifying High-Risk Atypical Breast Lesionsing clinically relevant explanations to its recommendations, thus it is intrinsically explainable, which is a major contribution of this work. Our experiments also show state-of-the-art performance in recall compared to the latest deep-learning based graph neural networks (GNNs).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 05:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
墨玉县| 镇平县| 昌宁县| 甘谷县| 八宿县| 三亚市| 文昌市| 台北市| 临安市| 白水县| 博客| 济宁市| 韩城市| 大石桥市| 麻栗坡县| 海门市| 万宁市| 蕉岭县| 寻甸| 双鸭山市| 荣昌县| 宁强县| 九龙城区| 平邑县| 大邑县| 滨州市| 景德镇市| 广水市| 浦县| 天全县| 富宁县| 洛川县| 德江县| 晋宁县| 丽江市| 东至县| 柳河县| 乌拉特后旗| 井冈山市| 达拉特旗| 敦化市|