找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021; 24th International C Marleen de Bruijne,Philippe C. Cattin,Caroli

[復(fù)制鏈接]
樓主: Body-Mass-Index
21#
發(fā)表于 2025-3-25 06:19:45 | 只看該作者
Imbalance-Aware Self-supervised Learning for 3D Radiomic Representations) balancing the composition of training batches. When combining the learned self-supervised feature with traditional radiomics, we show significant improvement in brain tumor classification and lung cancer staging tasks covering MRI and CT imaging modalities. Codes are available in ..
22#
發(fā)表于 2025-3-25 10:44:50 | 只看該作者
23#
發(fā)表于 2025-3-25 15:00:07 | 只看該作者
Contrastive Learning with Continuous Proxy Meta-data for 3D MRI Classificationh similar . meta-data with the anchor, assuming they share similar discriminative semantic features.?With our method, a 3D CNN model pre-trained on . multi-site healthy brain MRI scans can extract relevant features for three classification tasks: schizophrenia, bipolar diagnosis and Alzheimer’s dete
24#
發(fā)表于 2025-3-25 18:41:00 | 只看該作者
Self-supervised Longitudinal Neighbourhood Embedding We apply LNE to longitudinal T1w MRIs of two neuroimaging studies: a dataset composed of 274 healthy subjects, and Alzheimer’s Disease Neuroimaging Initiative (ADNI, .). The visualization of the smooth trajectory vector field and superior performance on downstream tasks demonstrate the strength of
25#
發(fā)表于 2025-3-25 23:00:42 | 只看該作者
SimTriplet: Simple Triplet Representation Learning with a Single GPUg negative samples; and (3) The recent mix precision training is employed to advance the training by only using a single GPU with 16?GB memory. By learning from 79,000 unlabeled pathological patch images, SimTriplet achieved 10.58% better performance compared with supervised learning. It also achiev
26#
發(fā)表于 2025-3-26 03:30:22 | 只看該作者
SAR: Scale-Aware Restoration Learning for 3D Tumor Segmentationations through multi-scale inputs. Moreover, an adversarial learning module is further introduced to learn modality invariant representations from multiple unlabeled source datasets. We demonstrate the effectiveness of our methods on two downstream tasks: i) Brain tumor segmentation, ii) Pancreas tu
27#
發(fā)表于 2025-3-26 07:11:46 | 只看該作者
28#
發(fā)表于 2025-3-26 12:16:27 | 只看該作者
29#
發(fā)表于 2025-3-26 12:43:46 | 只看該作者
30#
發(fā)表于 2025-3-26 17:24:00 | 只看該作者
Conference proceedings 2021achine learning - uncertainty..Part IV: image registration; image-guided interventions and surgery; surgical data science; surgical planning and simulation; surgical skill and work flow analysis; and surgical visualization and mixed, augmented and virtual reality..Part V: computer aided diagnosis; i
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 09:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台北县| 中西区| 岱山县| 晋中市| 沁源县| 孝昌县| 潜江市| 扎鲁特旗| 齐河县| 上栗县| 慈溪市| 岫岩| 大化| 托克逊县| 泸西县| 吴旗县| 枣庄市| 海淀区| 南宁市| 汪清县| 合川市| 谢通门县| 吉木乃县| 兴仁县| 恩施市| 怀集县| 石泉县| 香格里拉县| 四川省| 东海县| 县级市| 丰城市| 金昌市| 化州市| 武安市| 赣榆县| 华亭县| 汉沽区| 鄂托克旗| 溧水县| 威海市|