找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mechanics: From Theory to Computation; Essays in Honor of J Journal of Nonlinear Science Conference proceedings 2000 Springer Science+Busin

[復(fù)制鏈接]
樓主: 可憐
21#
發(fā)表于 2025-3-25 04:18:27 | 只看該作者
A Symplectic Integrator for Riemannian Manifolds,The configuration spaces of mechanical systems usually support Riemannian metrics which have explicitly solvable geodesic flows and parallel transport operators. While not of primary interest, such metrics can be used to generate integration algorithms by using the known parallel transport to evolve points in velocity phase space.
22#
發(fā)表于 2025-3-25 09:25:54 | 只看該作者
978-1-4612-7059-1Springer Science+Business Media New York 2000
23#
發(fā)表于 2025-3-25 12:42:33 | 只看該作者
Gravity Waves on the Surface of the Sphere,mation. Similarly, many of the second order terms can be eliminated. The resulting model has the feature that it leaves invariant several finite-dimensional subspaces on which the motion is integrable.
24#
發(fā)表于 2025-3-25 18:36:36 | 只看該作者
25#
發(fā)表于 2025-3-25 20:11:28 | 只看該作者
26#
發(fā)表于 2025-3-26 03:17:06 | 只看該作者
KAM Theory Near Multiplicity One Resonant Surfaces in Perturbations of A-Priori Stable Hamiltonian call .. For the a-priori unstable Hamiltonian we prove a KAM-type result for the survival of whiskered tori under the perturbation as an infinitely differentiable family, in the sense of Whitney, which can then be applied to the above normal form in the neighborhood of the resonant surface.
27#
發(fā)表于 2025-3-26 08:01:25 | 只看該作者
Constrained Euler Buckling,er steel beams. In contrast to the simple behavior of the unconstrained problem, we find a rich bifurcation structure, with multiple branches and concomitant hysteresis in the overall load-displacement curves.
28#
發(fā)表于 2025-3-26 09:49:05 | 只看該作者
29#
發(fā)表于 2025-3-26 13:57:59 | 只看該作者
30#
發(fā)表于 2025-3-26 18:28:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 05:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沛县| 和硕县| 博乐市| 汉中市| 东山县| 烟台市| 城口县| 寻乌县| 莒南县| 萍乡市| 谢通门县| 大渡口区| 南京市| 皋兰县| 许昌县| 巴中市| 吕梁市| 砚山县| 高淳县| 海口市| 连山| 淄博市| 都安| 渝中区| 武乡县| 佛山市| 揭东县| 阿坝| 娱乐| 孟州市| 普洱| 阳泉市| 中阳县| 大洼县| 龙泉市| 江口县| 延川县| 巴南区| 金昌市| 青河县| 武功县|