找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Measures of Noncompactness in Metric Fixed Point Theory; J. M. Ayerbe Toledano,T. Domínguez Benavides,G. Ló Book 1997 Springer Basel AG 19

[復制鏈接]
樓主: Gram114
21#
發(fā)表于 2025-3-25 05:53:27 | 只看該作者
Convexity and Smoothness, those which are invariant under isometries, in contrast to topological properties which are invariant with respect to homeomorphisms. Schauder’s fixed point theorem for continuous mappings is the most celebrated topological fixed point theorem.
22#
發(fā)表于 2025-3-25 09:15:47 | 只看該作者
23#
發(fā)表于 2025-3-25 13:57:46 | 只看該作者
24#
發(fā)表于 2025-3-25 19:14:18 | 只看該作者
Minimal Sets for a Measure of Noncompactness,The notion of a ?-minimal set for an MNC ? was introduced in [Do1] in order to study the relationships between condensing mappings for Kuratowski and Haus-dorff’s measures of noncompactness (see Chapter X).
25#
發(fā)表于 2025-3-25 21:07:43 | 只看該作者
Nearly Uniform Convexity and Nearly Uniform Smoothness,Reflexivity and the uniform Kadec-Klee property are among the most important properties of .-uniformly convex spaces. The study of spaces satisfying both properties was initiated by Huff in 1980 [Hu] who called these spaces nearly uniformly convex.
26#
發(fā)表于 2025-3-26 02:01:24 | 只看該作者
Uniformly Lipschitzian Mappings,Assume that . is a metric space and . : . → . is nonexpansive. Clearly . and all iterate mappings . are Lipschitzian with constant . = 1.
27#
發(fā)表于 2025-3-26 07:03:06 | 只看該作者
28#
發(fā)表于 2025-3-26 12:23:34 | 只看該作者
978-3-0348-9827-0Springer Basel AG 1997
29#
發(fā)表于 2025-3-26 15:28:01 | 只看該作者
Measures of Noncompactness in Metric Fixed Point Theory978-3-0348-8920-9Series ISSN 0255-0156 Series E-ISSN 2296-4878
30#
發(fā)表于 2025-3-26 19:08:42 | 只看該作者
Operator Theory: Advances and Applicationshttp://image.papertrans.cn/m/image/628159.jpg
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 13:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
古浪县| 保德县| 林芝县| 瑞金市| 宁津县| 高阳县| 长泰县| 吉安市| 五指山市| 白山市| 祁门县| 江津市| 柳江县| 绥江县| 凌云县| 监利县| 陇川县| 昆明市| 固始县| 庐江县| 南靖县| 宣化县| 枝江市| 楚雄市| 长垣县| 怀柔区| 建水县| 鸡泽县| 左权县| 桂东县| 介休市| 松原市| 山东省| 武汉市| 会东县| 孙吴县| 日土县| 精河县| 呼伦贝尔市| 黑水县| 隆林|