找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Measure, Topology, and Fractal Geometry; Gerald A. Edgar Textbook 19901st edition Springer-Verlag New York 1990 DEX.Mathematica.addition.a

[復(fù)制鏈接]
樓主: POL
21#
發(fā)表于 2025-3-25 03:27:14 | 只看該作者
Metric Topology,would be the first chapter of the book; but I included instead some more fractal-like material as Chapter 1. Chapter 2 is a more technical chapter. Have patience! It really is useful for the understanding of the rest of the book.
22#
發(fā)表于 2025-3-25 09:46:59 | 只看該作者
23#
發(fā)表于 2025-3-25 13:20:29 | 只看該作者
Springer-Verlag New York 1990
24#
發(fā)表于 2025-3-25 16:54:57 | 只看該作者
25#
發(fā)表于 2025-3-25 23:56:00 | 只看該作者
Fractal Examples,A few basic mathematical examples of fractals will be introduced in this chapter. Their analysis, and especially the question of what makes them “fractals” must be postponed until much later in the book.
26#
發(fā)表于 2025-3-26 00:08:43 | 只看該作者
Self-Similarity,There are several variant notions of “dimension” that may be classified as fractal dimensions. The most widely used is known as the Hausdorff dimension. It will be considered in Chapter 6. We begin here with the ., a fractal dimension that is easier to define (but not as useful).
27#
發(fā)表于 2025-3-26 06:45:19 | 只看該作者
28#
發(fā)表于 2025-3-26 12:31:35 | 只看該作者
Hausdorff Dimension,Next we come to the “Hausdorff dimension”. This is the dimension singled out by Mandelbrot when he defined “fractal”. It is perhaps a bit more difficult to define than some of the other kinds of dimension that have been (and will be) considered. But it is also the most useful of the fractal dimensions.
29#
發(fā)表于 2025-3-26 13:17:18 | 只看該作者
30#
發(fā)表于 2025-3-26 20:17:07 | 只看該作者
https://doi.org/10.1007/978-1-4757-4134-6DEX; Mathematica; addition; algebraic topology; algorithms; computer; fractal; fractal geometry; geometry; me
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
元氏县| 永兴县| 抚顺市| 旺苍县| 峨眉山市| 迁西县| 山丹县| 许昌县| 宁远县| 襄汾县| 汉中市| 竹溪县| 福清市| 宜州市| 确山县| 淮阳县| 吐鲁番市| 花莲市| 泰宁县| 巍山| 镇雄县| 樟树市| 桓仁| 慈溪市| 伊吾县| 红安县| 会理县| 石城县| 张家界市| 法库县| 桂东县| 万宁市| 司法| 乌兰浩特市| 锡林郭勒盟| 江孜县| 三门峡市| 遵义县| 鸡西市| 九龙县| 报价|