找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Measure, Topology, and Fractal Geometry; Gerald A. Edgar Textbook 19901st edition Springer-Verlag New York 1990 DEX.Mathematica.addition.a

[復(fù)制鏈接]
樓主: POL
21#
發(fā)表于 2025-3-25 03:27:14 | 只看該作者
Metric Topology,would be the first chapter of the book; but I included instead some more fractal-like material as Chapter 1. Chapter 2 is a more technical chapter. Have patience! It really is useful for the understanding of the rest of the book.
22#
發(fā)表于 2025-3-25 09:46:59 | 只看該作者
23#
發(fā)表于 2025-3-25 13:20:29 | 只看該作者
Springer-Verlag New York 1990
24#
發(fā)表于 2025-3-25 16:54:57 | 只看該作者
25#
發(fā)表于 2025-3-25 23:56:00 | 只看該作者
Fractal Examples,A few basic mathematical examples of fractals will be introduced in this chapter. Their analysis, and especially the question of what makes them “fractals” must be postponed until much later in the book.
26#
發(fā)表于 2025-3-26 00:08:43 | 只看該作者
Self-Similarity,There are several variant notions of “dimension” that may be classified as fractal dimensions. The most widely used is known as the Hausdorff dimension. It will be considered in Chapter 6. We begin here with the ., a fractal dimension that is easier to define (but not as useful).
27#
發(fā)表于 2025-3-26 06:45:19 | 只看該作者
28#
發(fā)表于 2025-3-26 12:31:35 | 只看該作者
Hausdorff Dimension,Next we come to the “Hausdorff dimension”. This is the dimension singled out by Mandelbrot when he defined “fractal”. It is perhaps a bit more difficult to define than some of the other kinds of dimension that have been (and will be) considered. But it is also the most useful of the fractal dimensions.
29#
發(fā)表于 2025-3-26 13:17:18 | 只看該作者
30#
發(fā)表于 2025-3-26 20:17:07 | 只看該作者
https://doi.org/10.1007/978-1-4757-4134-6DEX; Mathematica; addition; algebraic topology; algorithms; computer; fractal; fractal geometry; geometry; me
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东乡县| 瓦房店市| 安丘市| 苏尼特右旗| 乌海市| 图木舒克市| 普格县| 梅河口市| 峨边| 旌德县| 油尖旺区| 海淀区| 灵宝市| 苍梧县| 台州市| 台中县| 高青县| 左贡县| 景东| 开江县| 石嘴山市| 增城市| 会东县| 山西省| 苍溪县| 大同县| 上饶县| 涪陵区| 玉屏| 平顺县| 闽侯县| 内黄县| 白河县| 阿巴嘎旗| 六盘水市| 晋城| 泗洪县| 巩义市| 湖北省| 灵山县| 吉首市|