找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Measure, Integration & Real Analysis; Sheldon Axler Textbook‘‘‘‘‘‘‘‘ 2020 Sheldon Axler 2020 Measure theory textbook.Graduate real analysi

[復(fù)制鏈接]
樓主: Monroe
41#
發(fā)表于 2025-3-28 17:53:11 | 只看該作者
42#
發(fā)表于 2025-3-28 21:28:34 | 只看該作者
Hilbert Spaces,In this chapter, we will see a clean description of the bounded linear functionals on a Hilbert space. We will also see that every Hilbert space has an orthonormal basis, which make Hilbert spaces look much like standard Euclidean spaces but with infinite sums replacing finite sums.
43#
發(fā)表于 2025-3-29 01:29:34 | 只看該作者
Real and Complex Measures,A measure is a countably additive function from a .-algebra to [0,α]. In this chapter, we consider countably additive functions from a .-algebra to either . or .. The first section of this chapter shows that these functions, called real measures or complex measures, form an interesting Banach space with an appropriate norm.
44#
發(fā)表于 2025-3-29 06:11:05 | 只看該作者
45#
發(fā)表于 2025-3-29 07:43:25 | 只看該作者
Riemann Integration,y presenting the definitions leading to the Riemann integral. The big result in the first section states that a continuous real-valued function on a closed bounded interval is Riemann integrable. The proof depends upon the theorem that continuous functions on closed bounded intervals are uniformly continuous.
46#
發(fā)表于 2025-3-29 12:14:10 | 只看該作者
Differentiation,lewood maximal inequality. This tool is used to prove an almost everywhere version of the Fundamental Theorem of Calculus. These results lead us to an important theorem about the density of Lebesgue measurable sets.
47#
發(fā)表于 2025-3-29 17:25:27 | 只看該作者
Banach Spaces,mplex-valued functions. After that, we rapidly review the framework of vector spaces, which allows us to consider natural collections of measurable functions that are closed under addition and scalar multiplication.
48#
發(fā)表于 2025-3-29 20:56:46 | 只看該作者
49#
發(fā)表于 2025-3-30 01:32:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 22:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
花莲市| 罗平县| 张家港市| 新宾| 南城县| 江口县| 宜黄县| 斗六市| 崇义县| 上思县| 昂仁县| 嘉祥县| 扶沟县| 桃江县| 屯留县| 读书| 连江县| 本溪| 沽源县| 建水县| 吉林省| 靖边县| 阳谷县| 迭部县| 九江市| 景宁| 青海省| 迭部县| 吴旗县| 宁都县| 明光市| 汉阴县| 双流县| 安平县| 乌兰察布市| 法库县| 德保县| 治县。| 太原市| 双流县| 鲁甸县|