找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mean Field Games and Mean Field Type Control Theory; Alain Bensoussan,Jens Frehse,Phillip Yam Book 2013 Alain Bensoussan, Jens Frehse, Phi

[復(fù)制鏈接]
樓主: ambulance
31#
發(fā)表于 2025-3-26 21:44:15 | 只看該作者
32#
發(fā)表于 2025-3-27 04:17:16 | 只看該作者
Mean Field Games and Mean Field Type Control Theory
33#
發(fā)表于 2025-3-27 07:46:18 | 只看該作者
Introduction,t, mean field games are control problems, in the sense that one is interested in a single decision maker, who we call the representative agent. However, these problems are not standard, since both the evolution of the state and the objective functional are influenced by terms that are not directly r
34#
發(fā)表于 2025-3-27 11:52:15 | 只看該作者
The Mean Field Games,has a density with respect to the Lebesgue measure denoted by .(., .), which is the solution of the Fokker–Planck equation . We next want the feedback . to solve a standard control problem, in which . appears as a parameter. We can thus readily associate an HJB equation with this problem, parametriz
35#
發(fā)表于 2025-3-27 17:14:31 | 只看該作者
36#
發(fā)表于 2025-3-27 19:20:01 | 只看該作者
37#
發(fā)表于 2025-3-27 22:15:23 | 只看該作者
38#
發(fā)表于 2025-3-28 03:24:32 | 只看該作者
39#
發(fā)表于 2025-3-28 06:16:09 | 只看該作者
Nash Differential Games with Mean Field Effect,erms influencing both the evolution and the objective functional of this agent. The terminology game comes from the fact that the optimal feedback of the representative agent can be used as an approximation for a Nash equilibrium of a large community of agents that are identical. In Sect. 8.2 we hav
40#
發(fā)表于 2025-3-28 12:03:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 06:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳谷县| 安达市| 运城市| 新津县| 东乡| 湟源县| 富民县| 长沙县| 东莞市| 信丰县| 武山县| 江永县| 宁海县| 丰顺县| 通州区| 高平市| 汨罗市| 盈江县| 满城县| 孙吴县| 抚宁县| 澎湖县| 北流市| 当阳市| 崇仁县| 临颍县| 孝感市| 毕节市| 佛教| 绵竹市| 五寨县| 阿拉善左旗| 五莲县| 克什克腾旗| 蕲春县| 普陀区| 循化| 收藏| 将乐县| 诸城市| 临湘市|