找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mean Curvature Flow and Isoperimetric Inequalities; Manuel Ritoré,Carlo Sinestrari Textbook 2010 Birkh?user Basel 2010 Mean curvature.Mini

[復(fù)制鏈接]
樓主: 和尚吃肉片
11#
發(fā)表于 2025-3-23 10:51:16 | 只看該作者
Singular behaviour of convex surfacesIn the next two sections we shall see some results showing that, roughly speaking, the convexity properties of a surface evolving by mean curvature flow improve when a singularity is formed. We begin with the case of convex surfaces.
12#
發(fā)表于 2025-3-23 17:15:52 | 只看該作者
13#
發(fā)表于 2025-3-23 20:11:11 | 只看該作者
Mean curvature flow with surgeriesIn this section we describe the mean curvature flow with surgeries which has been defined in [48] for two-convex surfaces of dimension . ≥ 3. Such a construction is inspired by the one which was introduced by Hamilton [37] for the Ricci flow and which enabled Perelman [56] to prove the geometrization conjecture for three-dimensional manifolds.
14#
發(fā)表于 2025-3-24 01:48:22 | 只看該作者
Higher dimensionsUnlike surfaces, the use of the mean curvature flow in higher dimensions to prove isoperimetric inequalities is severely limited by the possibility of development of singularities. The reader is referred to Sinestrari’s course in this volume [113] for an updated discussion on these topics.
15#
發(fā)表于 2025-3-24 06:09:29 | 只看該作者
16#
發(fā)表于 2025-3-24 09:54:37 | 只看該作者
Mean Curvature Flow and Isoperimetric Inequalities978-3-0346-0213-6Series ISSN 2297-0304 Series E-ISSN 2297-0312
17#
發(fā)表于 2025-3-24 13:18:56 | 只看該作者
18#
發(fā)表于 2025-3-24 16:24:15 | 只看該作者
19#
發(fā)表于 2025-3-24 19:29:54 | 只看該作者
20#
發(fā)表于 2025-3-25 01:38:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 01:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临武县| 九龙坡区| 鄢陵县| 衡山县| 叶城县| 高唐县| 北碚区| 夏河县| 吐鲁番市| 合江县| 峡江县| 越西县| 常山县| 专栏| 成都市| 安达市| 博白县| 车致| 济宁市| 乌恰县| 遂宁市| 泗洪县| 白银市| 临泽县| 湖南省| 来凤县| 和顺县| 巢湖市| 吴桥县| 文成县| 宁阳县| 政和县| 庆元县| 赤壁市| 远安县| 米易县| 彰化县| 南部县| 明光市| 康保县| 渑池县|