找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Maximal Solvable Subgroups of Finite Classical Groups; Mikko Korhonen Book 2024 The Editor(s) (if applicable) and The Author(s), under exc

[復(fù)制鏈接]
查看: 44411|回復(fù): 41
樓主
發(fā)表于 2025-3-21 18:34:23 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Maximal Solvable Subgroups of Finite Classical Groups
編輯Mikko Korhonen
視頻videohttp://file.papertrans.cn/628/627888/627888.mp4
概述Extends Jordan’s results on maximal solvable subgroups.Discusses irreducible matrix groups, primitive permutation groups, and related topics.Suitable for graduate students and researchers in finite gr
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Maximal Solvable Subgroups of Finite Classical Groups;  Mikko Korhonen Book 2024 The Editor(s) (if applicable) and The Author(s), under exc
描述.This book studies maximal solvable subgroups of classical groups over finite fields. It provides the first modern account of Camille Jordan‘s classical results, and extends them, giving a classification of maximal irreducible solvable subgroups of general linear groups, symplectic groups, and orthogonal groups over arbitrary finite fields...A subgroup of a group G is said to be maximal solvable if it is maximal among the solvable subgroups of G. The history of this notion goes back to Jordan’s?.Traité.?(1870), in which he provided a classification of maximal solvable subgroups of symmetric groups. The main difficulty is in the primitive case, which leads to the problem of classifying maximal irreducible solvable subgroups of general linear groups over a field of prime order. One purpose of this monograph is expository: to give a proof of Jordan’s classification in modern terms. More generally, the aim is to generalize these results to classical groups over arbitrary finite fields, and to provide other results of interest related to irreducible solvable matrix groups...The text will be accessible to graduate students and researchers interested in primitive permutation groups, irred
出版日期Book 2024
關(guān)鍵詞Group Theory; Representation Theory; Finite Group Theory; Finite Solvable Groups; Maximal Solvable Subgr
版次1
doihttps://doi.org/10.1007/978-3-031-62915-0
isbn_softcover978-3-031-62914-3
isbn_ebook978-3-031-62915-0Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Maximal Solvable Subgroups of Finite Classical Groups影響因子(影響力)




書目名稱Maximal Solvable Subgroups of Finite Classical Groups影響因子(影響力)學(xué)科排名




書目名稱Maximal Solvable Subgroups of Finite Classical Groups網(wǎng)絡(luò)公開度




書目名稱Maximal Solvable Subgroups of Finite Classical Groups網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Maximal Solvable Subgroups of Finite Classical Groups被引頻次




書目名稱Maximal Solvable Subgroups of Finite Classical Groups被引頻次學(xué)科排名




書目名稱Maximal Solvable Subgroups of Finite Classical Groups年度引用




書目名稱Maximal Solvable Subgroups of Finite Classical Groups年度引用學(xué)科排名




書目名稱Maximal Solvable Subgroups of Finite Classical Groups讀者反饋




書目名稱Maximal Solvable Subgroups of Finite Classical Groups讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:48:55 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:14:06 | 只看該作者
地板
發(fā)表于 2025-3-22 04:46:43 | 只看該作者
5#
發(fā)表于 2025-3-22 11:19:25 | 只看該作者
6#
發(fā)表于 2025-3-22 16:21:58 | 只看該作者
7#
發(fā)表于 2025-3-22 17:25:27 | 只看該作者
8#
發(fā)表于 2025-3-23 00:26:13 | 只看該作者
9#
發(fā)表于 2025-3-23 05:05:52 | 只看該作者
10#
發(fā)表于 2025-3-23 07:38:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 23:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
景宁| 措勤县| 彭阳县| 大姚县| 定陶县| 浦东新区| 九龙城区| 张家口市| 涡阳县| 吐鲁番市| 紫阳县| 丹江口市| 梁平县| 扶绥县| 鹤岗市| 彭阳县| 镇远县| 棋牌| 凉山| 抚远县| 金乡县| 历史| 绥滨县| 桐柏县| 新竹市| 永泰县| 永仁县| 汶川县| 泽州县| 利津县| 巴南区| 得荣县| 温州市| 东城区| 辽宁省| 庆元县| 勐海县| 班戈县| 邮箱| 黄龙县| 黄大仙区|