找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Matrix Groups; Morton L. Curtis Textbook 1984Latest edition Springer-Verlag New York Inc. 1984 Abelian group.Algebra.Group theory.Groups.M

[復(fù)制鏈接]
查看: 28901|回復(fù): 53
樓主
發(fā)表于 2025-3-21 18:53:00 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Matrix Groups
編輯Morton L. Curtis
視頻videohttp://file.papertrans.cn/628/627748/627748.mp4
叢書(shū)名稱Universitext
圖書(shū)封面Titlebook: Matrix Groups;  Morton L. Curtis Textbook 1984Latest edition Springer-Verlag New York Inc. 1984 Abelian group.Algebra.Group theory.Groups.M
描述These notes were developed from a course taught at Rice Univ- sity in the spring of 1976 and again at the University of Hawaii in the spring of 1977. It is assumed that the students know some linear algebra and a little about differentiation of vector-valued functions. The idea is to introduce students to some of the concepts of Lie group theory-- all done at the concrete level of matrix groups. As much as we could, we motivated developments as a means of deciding when two matrix groups (with different definitions) are isomorphic. In Chapter I "group" is defined and examples are given; ho- morphism and isomorphism are defined. For a field k denotes the algebra of n x n matrices over k We recall that A E Mn(k) has an inverse if and only if det A ~ 0 , and define the general linear group GL(n,k) We construct the skew-field lli of to operate linearly on llin quaternions and note that for A E Mn(lli) we must operate on the right (since we mUltiply a vector by a scalar n on the left). So we use row vectors for R , en, llin and write xA for the row vector obtained by matrix multiplication. We get a ~omplex-valued determinant function on Mn (11) such that det A ~ 0 guarantees that A has a
出版日期Textbook 1984Latest edition
關(guān)鍵詞Abelian group; Algebra; Group theory; Groups; Matrizengruppe; Vector space; homomorphism
版次2
doihttps://doi.org/10.1007/978-1-4612-5286-3
isbn_softcover978-0-387-96074-6
isbn_ebook978-1-4612-5286-3Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag New York Inc. 1984
The information of publication is updating

書(shū)目名稱Matrix Groups影響因子(影響力)




書(shū)目名稱Matrix Groups影響因子(影響力)學(xué)科排名




書(shū)目名稱Matrix Groups網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Matrix Groups網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Matrix Groups被引頻次




書(shū)目名稱Matrix Groups被引頻次學(xué)科排名




書(shū)目名稱Matrix Groups年度引用




書(shū)目名稱Matrix Groups年度引用學(xué)科排名




書(shū)目名稱Matrix Groups讀者反饋




書(shū)目名稱Matrix Groups讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:07:09 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:22:13 | 只看該作者
地板
發(fā)表于 2025-3-22 04:56:05 | 只看該作者
5#
發(fā)表于 2025-3-22 12:26:34 | 只看該作者
Exponential and Logarithm,Given a matrix group G we have defined a vector space T -- the tangent space to G at I . In this chapter we develop maps to send T to G and G to T and study their properties. We will work with real matrices -- developments for ? and ? are quite analogous. (We need these maps to determine dimensions of some of our matrix groups.)
6#
發(fā)表于 2025-3-22 16:20:23 | 只看該作者
7#
發(fā)表于 2025-3-22 19:52:14 | 只看該作者
Topology,Our matrix groups are all subsets of euclidean spaces, because they are all subsets of.
8#
發(fā)表于 2025-3-22 21:40:25 | 只看該作者
Maximal Tori,If G and H are groups, we make G × H into a group by defining ..
9#
發(fā)表于 2025-3-23 03:32:42 | 只看該作者
Conjugacy of Maximal Tori,: A subset Y of a space X is said to be . . X if every nonempty open set in X contains at least one point in Y.
10#
發(fā)表于 2025-3-23 05:58:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 21:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
原阳县| 全椒县| 高密市| 吉木萨尔县| 杭锦后旗| 岑溪市| 柘荣县| 太仓市| 修武县| 那坡县| 安泽县| 如皋市| 平遥县| 隆化县| 巨鹿县| 沙田区| 手游| 楚雄市| 桂阳县| 华阴市| 阜新市| 六盘水市| 泰州市| 长宁区| 垫江县| 泽库县| 海宁市| 英德市| 易门县| 榆中县| 滦平县| 西平县| 樟树市| 蒲城县| 凤山县| 苍山县| 郯城县| 鲁山县| 玉环县| 辰溪县| 北海市|