找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Matrices; Theory and Applicati Denis Serre Textbook 20021st edition Springer Science+Business Media New York 2002 Eigenvalue.Matrix.algebra

[復(fù)制鏈接]
查看: 48227|回復(fù): 47
樓主
發(fā)表于 2025-3-21 18:55:09 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Matrices
副標題Theory and Applicati
編輯Denis Serre
視頻videohttp://file.papertrans.cn/628/627721/627721.mp4
概述Includes supplementary material:
叢書名稱Graduate Texts in Mathematics
圖書封面Titlebook: Matrices; Theory and Applicati Denis Serre Textbook 20021st edition Springer Science+Business Media New York 2002 Eigenvalue.Matrix.algebra
描述.In this book, Denis Serre begins by providing a clean and concise introduction to the basic theory of matrices. He then goes on to give many interesting applications of matrices to different aspects of mathematics and also other areas of science and engineering...The book mixes together algebra, analysis, complexity theory and numerical analysis. As such, this book will provide many scientists, not just mathematicians, with a useful and reliable reference. It is intended for advanced undergraduate and graduate students with either applied or theoretical goals. This book is based on a course given by the author at the Ecole Normale Supérieure de Lyon..
出版日期Textbook 20021st edition
關(guān)鍵詞Eigenvalue; Matrix; algebra; matrices; numerical analysis; matrix theory
版次1
doihttps://doi.org/10.1007/b98899
isbn_ebook978-0-387-22758-0Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer Science+Business Media New York 2002
The information of publication is updating

書目名稱Matrices影響因子(影響力)




書目名稱Matrices影響因子(影響力)學科排名




書目名稱Matrices網(wǎng)絡(luò)公開度




書目名稱Matrices網(wǎng)絡(luò)公開度學科排名




書目名稱Matrices被引頻次




書目名稱Matrices被引頻次學科排名




書目名稱Matrices年度引用




書目名稱Matrices年度引用學科排名




書目名稱Matrices讀者反饋




書目名稱Matrices讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:57:39 | 只看該作者
Square Matrices,it is useful to consider matrices with entries in a ring. This allows us to consider matrices with entries in ? (rational integers) as well as in .[.] (polynomials with coefficients in .). We shall assume that the ring . of scalars is a commutative (meaning that the multiplication is commutative) in
板凳
發(fā)表于 2025-3-22 00:23:06 | 只看該作者
地板
發(fā)表于 2025-3-22 05:39:45 | 只看該作者
Norms, the eigenvalues of .: .When . =?, one takes into account the complex eigenvalues when computing .(.)..The scalar (if . =?) or Hermitian (if . =?) product on . is denoted by .. The vector space . is endowed with various norms, pairwise equivalent since . has finite dimension (Proposition 4.1.3 below
5#
發(fā)表于 2025-3-22 12:47:25 | 只看該作者
6#
發(fā)表于 2025-3-22 16:10:05 | 只看該作者
7#
發(fā)表于 2025-3-22 20:14:46 | 只看該作者
Matrix Factorizations,many times with various values of b. In the next chapter we shall study iterative methods for the case .=? or ?. Here we concentrate on a simple idea: To decompose . as a product . in such a way that the resolution of the intermediate systems . = . and . = . is “cheap”. In general, at least one of t
8#
發(fā)表于 2025-3-22 22:48:24 | 只看該作者
Iterative Methods for Linear Problems,. is invertible. For example, if . admits an . factorization, the successive resolution of . = ., . = . is called the .. When a leading principal minor of . vanishes, a permutation of the columns allows us to return to the generic case. More generally, the Gauss method with pivoting consists in perm
9#
發(fā)表于 2025-3-23 02:58:13 | 只看該作者
Approximation of Eigenvalues,ute the characteristic polynomial and then find its roots, turns out to be hopeless because of Abel’s theorem, which states that the general equation . = 0, where . is a polynomial of degree . ≥ 5, is not solvable using algebraic operations and roots of any order. For this reason, there e xists no d
10#
發(fā)表于 2025-3-23 08:23:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 05:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜宾市| 中西区| 连平县| 将乐县| 平定县| 廉江市| 西乌珠穆沁旗| 镇赉县| 民丰县| 古蔺县| 罗田县| 景德镇市| 雷州市| 舞阳县| 阿勒泰市| 山阴县| 乾安县| 昭觉县| 资溪县| 久治县| 丽江市| 繁昌县| 米林县| 长子县| 来安县| 江达县| 鞍山市| 治县。| 民乐县| 集安市| 内乡县| 进贤县| 珠海市| 新丰县| 许昌市| 深圳市| 东源县| 昌邑市| 肇东市| 凤台县| 玉屏|