找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Matrices; Theory and Applicati Denis Serre Textbook 2010Latest edition The Editor(s) (if applicable) and The Author(s), under exclusive lic

[復(fù)制鏈接]
樓主: Eschew
21#
發(fā)表于 2025-3-25 04:21:15 | 只看該作者
Elementary Linear and Multilinear Algebra,This chapter is the only one where results are given either without proof, or with sketchy proofs. A beginner should have a close look at a textbook dedicated to linear algebra, not only reading statements and proofs, but also solving exercises in order to become familiar with all the relevant notions.
22#
發(fā)表于 2025-3-25 07:33:29 | 只看該作者
Tensor and Exterior Products,Let . and . be .-vector spaces whose dimensions are finite. We construct their .. ?.. as follows.
23#
發(fā)表于 2025-3-25 12:14:08 | 只看該作者
24#
發(fā)表于 2025-3-25 19:49:54 | 只看該作者
25#
發(fā)表于 2025-3-25 22:07:57 | 只看該作者
Norms,In this chapter, the field .is always .or .and .denotes ... The scalar (if .=.) or Hermitian (if .=.) product on .is denoted by .
26#
發(fā)表于 2025-3-26 01:50:39 | 只看該作者
27#
發(fā)表于 2025-3-26 07:41:44 | 只看該作者
Matrices with Entries in a Principal Ideal Domain; Jordan Reduction,In this chapter we consider only .(see Chapter 3). Such a ring .can be embedded in its field of fractions, which is the quotient of . by the equivalence relation . The embedding is the map ..
28#
發(fā)表于 2025-3-26 10:58:55 | 只看該作者
Exponential of a Matrix, Polar Decomposition, and Classical Groups,Polar decomposition and exponentiation are fundamental tools in the theory of finite-dimensional Lie groups and Lie algebras. We do not consider these notions here in their full generality, but restrict attention to their matricial aspects.
29#
發(fā)表于 2025-3-26 12:42:39 | 只看該作者
Matrix Factorizations and Their Applications,The techniques described below are often called .
30#
發(fā)表于 2025-3-26 17:45:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 16:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庄河市| 无为县| 缙云县| 恩施市| 施秉县| 罗城| 隆昌县| 龙游县| 高雄县| 宜宾县| 南郑县| 富蕴县| 新乡市| 思南县| 武川县| 遂溪县| 五莲县| 仁布县| 文成县| 山西省| 商洛市| 北辰区| 界首市| 松溪县| 丹巴县| 安阳县| 贵德县| 阳曲县| 新巴尔虎左旗| 方山县| 尚志市| 类乌齐县| 柳河县| 虎林市| 龙游县| 博兴县| 浠水县| 双流县| 尖扎县| 横山县| 芦山县|