找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematische Werke; Erster Band Funktion Adolf Hurwitz,Abteilung für Mathematik und Physik Book 1932 Springer Basel AG 1932

[復(fù)制鏈接]
查看: 15571|回復(fù): 58
樓主
發(fā)表于 2025-3-21 16:41:53 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Mathematische Werke
副標(biāo)題Erster Band Funktion
編輯Adolf Hurwitz,Abteilung für Mathematik und Physik
視頻videohttp://file.papertrans.cn/628/627661/627661.mp4
圖書(shū)封面Titlebook: Mathematische Werke; Erster Band Funktion Adolf Hurwitz,Abteilung für Mathematik und Physik  Book 1932 Springer Basel AG 1932
描述Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anf?ngen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.
出版日期Book 1932
版次1
doihttps://doi.org/10.1007/978-3-0348-4161-0
isbn_softcover978-3-0348-4086-6
isbn_ebook978-3-0348-4161-0
copyrightSpringer Basel AG 1932
The information of publication is updating

書(shū)目名稱Mathematische Werke影響因子(影響力)




書(shū)目名稱Mathematische Werke影響因子(影響力)學(xué)科排名




書(shū)目名稱Mathematische Werke網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Mathematische Werke網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Mathematische Werke被引頻次




書(shū)目名稱Mathematische Werke被引頻次學(xué)科排名




書(shū)目名稱Mathematische Werke年度引用




書(shū)目名稱Mathematische Werke年度引用學(xué)科排名




書(shū)目名稱Mathematische Werke讀者反饋




書(shū)目名稱Mathematische Werke讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:17:58 | 只看該作者
über die Differentialgleichungen dritter Ordnung, welchen die Formen mit linearen Transformationen itter Ordnung genügt, von welcher zugleich ..(0) und ..(0) L?sungen sind.). In den folgenden Zeilen m?chte ich nachweisen, dass diese Differentialgleichung nur ein Beispiel eines allgemeinen Satzes bildet, welcher der Theorie der Funktionen mit linearen Transformationen in sich angeh?rt.
板凳
發(fā)表于 2025-3-22 02:10:50 | 只看該作者
地板
發(fā)表于 2025-3-22 07:32:43 | 只看該作者
5#
發(fā)表于 2025-3-22 11:40:31 | 只看該作者
6#
發(fā)表于 2025-3-22 14:47:37 | 只看該作者
7#
發(fā)表于 2025-3-22 18:46:42 | 只看該作者
Einige Eigenschaften der Dirichlet’schen Funktionen ,, die bei der Bestimmung der Klassenanzahlen biIm Jahre 1849 hat Herr Schl?milch folgende interessante Bemerkung gemacht.):
8#
發(fā)表于 2025-3-22 23:06:37 | 只看該作者
über arithmetische Eigenschaften gewisser transzendenter FunktionenDie Exponentialfunktion, welche sich durch die homogene lineare Differentialgleichung erster Ordnung: .definieren l?sst, besitzt merkwürdige arithmetische Eigenschaften, deren Untersuchung in den bekannten Arbeiten von Hermite.) begonnen und neuerdings von Herrn Lindemann.) mit grossem Erfolge weitergeführt worden ist.
9#
發(fā)表于 2025-3-23 01:24:17 | 只看該作者
10#
發(fā)表于 2025-3-23 08:04:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 02:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
饶平县| 富锦市| 莫力| 册亨县| 内江市| 岳普湖县| 休宁县| 禄丰县| 改则县| 唐海县| 利辛县| 文成县| 含山县| 潞城市| 肥乡县| 中阳县| 本溪| 富裕县| 九江县| 邹城市| 溧水县| 南昌县| 丽水市| 阳春市| 南安市| 阿鲁科尔沁旗| 驻马店市| 浏阳市| 安远县| 大姚县| 大庆市| 安岳县| 宿州市| 新蔡县| 长兴县| 德保县| 迁安市| 汤原县| 都昌县| 武汉市| 大埔县|