找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics of Wave Phenomena; Willy D?rfler,Marlis Hochbruck,Birgit Sch?rkhuber Conference proceedings 2020 Springer Nature Switzerland A

[復(fù)制鏈接]
51#
發(fā)表于 2025-3-30 09:24:25 | 只看該作者
On Hyperbolic Initial-Boundary Value Problems with a Strictly Dissipative Boundary Condition,e regularity assumptions on the coefficients of the differential operator and the boundary condition as well as the boundary itself are quite minimal. Characterizations of strictly dissipative boundary operators are given and the example of Maxwell’s equations is discussed.
52#
發(fā)表于 2025-3-30 14:31:22 | 只看該作者
53#
發(fā)表于 2025-3-30 17:20:49 | 只看該作者
Sparse Regularization of Inverse Problems by Operator-Adapted Frame Thresholding,ralizes the SVD. The DFD allows to define a non-iterative (direct) operator-adapted frame thresholding approach which we show to provide a convergent regularization method with linear convergence rates. These results will be compared to the well-known analysis and synthesis variants of sparse ..-reg
54#
發(fā)表于 2025-3-30 20:47:15 | 只看該作者
55#
發(fā)表于 2025-3-31 04:21:49 | 只看該作者
56#
發(fā)表于 2025-3-31 07:43:48 | 只看該作者
57#
發(fā)表于 2025-3-31 12:58:50 | 只看該作者
58#
發(fā)表于 2025-3-31 16:08:48 | 只看該作者
,Existence and Stability of Klein–Gordon Breathers in the Small-Amplitude Limit,breathers have precise scaling with respect to the small coupling strength .. By using the classical Lyapunov–Schmidt method, we show existence and linear stability of the KG breather from existence and linear stability of the corresponding dNLS soliton. Nonlinear stability, for an exponentially lon
59#
發(fā)表于 2025-3-31 21:12:18 | 只看該作者
60#
發(fā)表于 2025-4-1 01:26:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巩留县| 沙田区| 常山县| 东安县| 洛浦县| 博乐市| 章丘市| 弋阳县| 仙桃市| 平阴县| 白朗县| 吴桥县| 湖口县| 武乡县| 社会| 重庆市| 永川市| 罗甸县| 九龙坡区| 常熟市| 祥云县| 郴州市| 东辽县| 渝中区| 湘潭市| 盐池县| 东兴市| 高尔夫| 竹溪县| 嘉善县| 孟村| 永兴县| 道孚县| 双柏县| 巴彦淖尔市| 石河子市| 庐江县| 合江县| 丰原市| 临安市| 石狮市|