找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics of Aperiodic Order; Johannes Kellendonk,Daniel Lenz,Jean Savinien Book 2015 Springer Basel 2015 Pisot substitution conjecture.

[復制鏈接]
查看: 26948|回復: 46
樓主
發(fā)表于 2025-3-21 17:16:33 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Mathematics of Aperiodic Order
編輯Johannes Kellendonk,Daniel Lenz,Jean Savinien
視頻videohttp://file.papertrans.cn/627/626925/626925.mp4
概述Presents an evolving research area in which many different mathematical theories meet.Yields a pool of interesting examples for various abstract mathematical theories.Following D. Shechtman being awar
叢書名稱Progress in Mathematics
圖書封面Titlebook: Mathematics of Aperiodic Order;  Johannes Kellendonk,Daniel Lenz,Jean Savinien Book 2015 Springer Basel 2015 Pisot substitution conjecture.
描述.What is order that is not based on simple repetition, that is, periodicity? How must atoms be arranged in a material so that it diffracts like a quasicrystal? How can we describe aperiodically ordered systems mathematically? .Originally triggered by the – later Nobel prize-winning – discovery of quasicrystals, the investigation of aperiodic order has since become a well-established and rapidly evolving field of mathematical research with close ties to a surprising variety of branches of mathematics and physics. .This book offers an overview of the state of the art in the field of aperiodic order, presented in carefully selected authoritative surveys. It is intended for non-experts with a general background in mathematics, theoretical physics or computer science, and offers a highly accessible source of first-hand information for all those interested in this rich and exciting field. Topics covered include the mathematical theory of diffraction, the dynamical systems of tilings or Delone sets, their cohomology and non-commutative geometry, the Pisot substitution conjecture, aperiodic Schr?dinger operators, and connections to arithmetic number theory..
出版日期Book 2015
關鍵詞Pisot substitution conjecture; aperiodic systems; dynamical systems of tilings; mathematical diffractio
版次1
doihttps://doi.org/10.1007/978-3-0348-0903-0
isbn_ebook978-3-0348-0903-0Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Basel 2015
The information of publication is updating

書目名稱Mathematics of Aperiodic Order影響因子(影響力)




書目名稱Mathematics of Aperiodic Order影響因子(影響力)學科排名




書目名稱Mathematics of Aperiodic Order網(wǎng)絡公開度




書目名稱Mathematics of Aperiodic Order網(wǎng)絡公開度學科排名




書目名稱Mathematics of Aperiodic Order被引頻次




書目名稱Mathematics of Aperiodic Order被引頻次學科排名




書目名稱Mathematics of Aperiodic Order年度引用




書目名稱Mathematics of Aperiodic Order年度引用學科排名




書目名稱Mathematics of Aperiodic Order讀者反饋




書目名稱Mathematics of Aperiodic Order讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:13:46 | 只看該作者
Non-Periodic Systems with Continuous Diffraction Measures,e in the traditional approach. We furthermore introduce a ‘Palm-type’ measure for general complex-valued random measures that are stationary and ergodic, and relate its intensity measure to the autocorrelation measure.
板凳
發(fā)表于 2025-3-22 04:06:33 | 只看該作者
On the Pisot Substitution Conjecture,hich the Pisot Substitution Conjecture has been verified and present algorithmic procedures for checking pure discrete spectrum. We conclude with a discussion of possible extensions to higher dimensions.
地板
發(fā)表于 2025-3-22 08:34:15 | 只看該作者
Tilings with Infinite Local Complexity,s and complexity functions. Three examples with infinite local complexity of distinctly different origin are fully analyzed using the tools and techniques contained in this chapter. We conclude with some important classes of open questions about tiling spaces with infinite local complexity.
5#
發(fā)表于 2025-3-22 10:34:31 | 只看該作者
6#
發(fā)表于 2025-3-22 15:56:55 | 只看該作者
0743-1643 ract mathematical theories.Following D. Shechtman being awar.What is order that is not based on simple repetition, that is, periodicity? How must atoms be arranged in a material so that it diffracts like a quasicrystal? How can we describe aperiodically ordered systems mathematically? .Originally tr
7#
發(fā)表于 2025-3-22 19:35:13 | 只看該作者
8#
發(fā)表于 2025-3-22 22:30:44 | 只看該作者
9#
發(fā)表于 2025-3-23 04:17:26 | 只看該作者
On the Pisot Substitution Conjecture,mical systems arising from substitutions should have pure discrete dynamical spectrum. We describe the various contexts (symbolic, geometrical, arithmetical) in which substitution dynamical systems arise and review the relevant properties of these systems. The Pisot Substitution Conjecture is stated
10#
發(fā)表于 2025-3-23 07:21:33 | 只看該作者
Cohomology of Hierarchical Tilings,ompute these cohomologies. We then consider the uses of tiling cohomology to distinguish spaces, to understand deformations, and to help understand maps between tiling spaces. The emphasis of this chapter is on substitution tilings and their generalizations, but the underlying ideas apply equally we
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
西华县| 竹山县| 平山县| 永和县| 汕头市| 贡山| 仁布县| 岳阳县| 砚山县| 江陵县| 志丹县| 项城市| 谷城县| 双流县| 通榆县| 修水县| 海安县| 明溪县| 合水县| 无为县| 唐山市| 昔阳县| 梧州市| 巴楚县| 湟源县| 靖宇县| 外汇| 云和县| 中山市| 宜兰市| 泗水县| 红安县| 三门峡市| 仁寿县| 绿春县| 尚志市| 抚顺县| 合山市| 南雄市| 武穴市| 余干县|