找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics for Life Science and Medicine; Yasuhiro Takeuchi,Yoh Iwasa,Kazunori Sato Book 2007 Springer-Verlag Berlin Heidelberg 2007 Epid

[復制鏈接]
樓主: 導彈
21#
發(fā)表于 2025-3-25 03:19:09 | 只看該作者
Yasuhiro Takeuchi,Yoh Iwasa,Kazunori SatoA fascinating survey of the theory of dynamical systems in biology and medicine.An accessible introduction for students, also including much food-for-thought for researchers.Includes supplementary mat
22#
發(fā)表于 2025-3-25 08:52:23 | 只看該作者
23#
發(fā)表于 2025-3-25 14:31:01 | 只看該作者
24#
發(fā)表于 2025-3-25 19:48:54 | 只看該作者
Pathogen Competition and Coexistence and the Evolution of Virulence,s low and there is no immunity to the disease. If disease prevalence is high, strain competition rather selects for low disease fatality. A strain which would go extinct on its own can coexist with a more virulent strain by protecting from it, if it has strong vertical transmission.
25#
發(fā)表于 2025-3-25 21:26:10 | 只看該作者
26#
發(fā)表于 2025-3-26 01:38:05 | 只看該作者
27#
發(fā)表于 2025-3-26 06:41:04 | 只看該作者
Basic Knowledge and Developing Tendencies in Epidemic Dynamics, In this chapter, some basic ideas of modelling the spread of infectious diseases, the main concepts of epidemic dynamics, and some developing tendencies in the study of epidemic dynamics are introduced, and some results with respect to the spread of SARS in China are given.
28#
發(fā)表于 2025-3-26 10:18:15 | 只看該作者
Delayed SIR Epidemic Models for Vector Diseases?,vised to assume that the birth rate is not independent of the total population size. For all models, we summarize the known mathematical results on stability of the equilibria and permanence. We also give some open problems and our conjectures on the threshold for an epidemic to occur.
29#
發(fā)表于 2025-3-26 14:13:55 | 只看該作者
Book 2007nd the evolution of virulence and the rapid evolution of viruses within a host. Each chapter will serve to introduce students and scholars to the state-of-the-art in an exciting area, to present new results, and to inspire future contributions to mathematical modeling in?life science and medicine..
30#
發(fā)表于 2025-3-26 19:56:42 | 只看該作者
1618-7210 er will serve to introduce students and scholars to the state-of-the-art in an exciting area, to present new results, and to inspire future contributions to mathematical modeling in?life science and medicine..978-3-642-07077-8978-3-540-34426-1Series ISSN 1618-7210 Series E-ISSN 2197-5647
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
无锡市| 光泽县| 观塘区| 嘉祥县| 肃宁县| 福建省| 彰武县| 遵义县| 铜川市| 南充市| 永嘉县| 荃湾区| 温州市| 阳春市| 大兴区| 双牌县| 宁晋县| 黄石市| 玉树县| 南靖县| 莱州市| 喀喇沁旗| 武威市| 南通市| 南充市| 华阴市| 西乡县| 开原市| 乐安县| 资兴市| 渭南市| 谢通门县| 临沂市| 叙永县| 青河县| 佛学| 秦皇岛市| 泗洪县| 分宜县| 肃南| 山东|