找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics and Computation in Music; 7th International Co Mariana Montiel,Francisco Gomez-Martin,Octavio A. Conference proceedings 2019 S

[復(fù)制鏈接]
查看: 43639|回復(fù): 55
樓主
發(fā)表于 2025-3-21 16:48:11 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Mathematics and Computation in Music
副標(biāo)題7th International Co
編輯Mariana Montiel,Francisco Gomez-Martin,Octavio A.
視頻videohttp://file.papertrans.cn/627/626808/626808.mp4
叢書(shū)名稱(chēng)Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Mathematics and Computation in Music; 7th International Co Mariana Montiel,Francisco Gomez-Martin,Octavio A.  Conference proceedings 2019 S
描述.This book constitutes the thoroughly refereed proceedings of the 7th International Conference on Mathematics and Computation in Music, MCM 2019, held in Madrid, Spain, in June 2019. The 22 full papers and 10 short papers presented were carefully reviewed and selected from 48 submissions. The papers feature research that combines mathematics or computation with music theory, music analysis, composition, and performance. They are organized in topical sections on algebraic and other abstract mathematical approaches to understanding musical objects; remanaging Riemann: mathematical music theory as “experimental philosophy”?; octave division; computer-based approaches to composition and score structuring; models for music cognition and beat tracking; pedagogy of mathematical music theory..The chapter “Distant Neighbors and Interscalar Contiguities” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com..
出版日期Conference proceedings 2019
關(guān)鍵詞algebraic structures; artificial intelligence; clustering; computational analysis of music; computationa
版次1
doihttps://doi.org/10.1007/978-3-030-21392-3
isbn_softcover978-3-030-21391-6
isbn_ebook978-3-030-21392-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書(shū)目名稱(chēng)Mathematics and Computation in Music影響因子(影響力)




書(shū)目名稱(chēng)Mathematics and Computation in Music影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Mathematics and Computation in Music網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Mathematics and Computation in Music網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Mathematics and Computation in Music被引頻次




書(shū)目名稱(chēng)Mathematics and Computation in Music被引頻次學(xué)科排名




書(shū)目名稱(chēng)Mathematics and Computation in Music年度引用




書(shū)目名稱(chēng)Mathematics and Computation in Music年度引用學(xué)科排名




書(shū)目名稱(chēng)Mathematics and Computation in Music讀者反饋




書(shū)目名稱(chēng)Mathematics and Computation in Music讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:15:48 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:52:58 | 只看該作者
Fourier Phase and Pitch-Class SumMusic theorists have proposed two very different geometric models of musical objects, one based on voice leading and the other based on the Fourier transform. On the surface these models are completely different, but they converge in special cases, including many geometries that are of particular analytical interest.
地板
發(fā)表于 2025-3-22 04:33:51 | 只看該作者
5#
發(fā)表于 2025-3-22 10:59:38 | 只看該作者
6#
發(fā)表于 2025-3-22 13:44:24 | 只看該作者
7#
發(fā)表于 2025-3-22 17:51:50 | 只看該作者
8#
發(fā)表于 2025-3-22 22:46:08 | 只看該作者
9#
發(fā)表于 2025-3-23 03:30:57 | 只看該作者
tional scientists working in the field of semiconductors..InVols. III/17a-i and III/22a, b (supplement) on semiconductor physics and technology have been published earlier, the latter covering new data on the technologically important group IV elements and III-V, II-VI and I-VII compounds only. The
10#
發(fā)表于 2025-3-23 05:56:22 | 只看該作者
Octavio A. Agustín-Aquino,Guerino Mazzolational scientists working in the field of semiconductors..InVols. III/17a-i and III/22a, b (supplement) on semiconductor physics and technology have been published earlier, the latter covering new data on the technologically important group IV elements and III-V, II-VI and I-VII compounds only. The
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 21:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉峪关市| 嘉义县| 深水埗区| 海淀区| 策勒县| 甘德县| 筠连县| 南陵县| 新乡县| 久治县| 奉化市| 佛坪县| 大荔县| 宁安市| 岳池县| 沈丘县| 桐城市| 通山县| 金门县| 曲沃县| 八宿县| 依安县| 富源县| 汉源县| 滨州市| 富裕县| 镇原县| 恩平市| 固阳县| 公主岭市| 城固县| 万盛区| 平阳县| 郑州市| 同江市| 万全县| 北京市| 深水埗区| 尤溪县| 东丰县| 东光县|