找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics and Computation in Music; 4th International Co Jason Yust,Jonathan Wild,John Ashley Burgoyne Conference proceedings 2013 Spring

[復(fù)制鏈接]
樓主: Exaltation
11#
發(fā)表于 2025-3-23 10:34:48 | 只看該作者
A Hypercube-Graph Model for ,-Tone Rows and Relationsompletion than those that deal more exclusively with .-tone rows and their relations as permutations of an underlying set. Our results lead to a graph-theoretical representation of the duality inherent in the pitch-class/order-number isomorphism of serial theory.
12#
發(fā)表于 2025-3-23 14:29:40 | 只看該作者
13#
發(fā)表于 2025-3-23 20:01:06 | 只看該作者
Incorporating Voice Permutations into the Theory of Neo-Riemannian Groups and Lewinian Duality.. Musical examples include Liszt, R. W. Venezia, S. 201 and Schoenberg, String Quartet Number 1, Opus 7. We also prove that the Fiore–Noll construction of the dual group in the finite case works, and clarify the relationship of permutations with the RICH transformation.
14#
發(fā)表于 2025-3-24 00:34:22 | 只看該作者
15#
發(fā)表于 2025-3-24 04:02:44 | 只看該作者
Using Formal Concept Analysisto Represent Chroma Systemsroaches are conceptually different. The same result is obtained for a given subsystem of the traditional Tone System, as we will show by analysing the case of the pentatonic system. This opens a window towards generic tone systems that can be used as starting point for the structural analysis of other finite chroma systems.
16#
發(fā)表于 2025-3-24 09:11:07 | 只看該作者
The Minkowski Geometry of Numbers Applied to the Theory of Tone Systemsthat yields selections satisfactorily reflecting the musical reality. The framework draws methods from the Minkowski geometry of numbers. It is shown that only . of very specific shapes called . lead to relevant selections. Manifold music-theoretical examples include chromatic, superchromatic, and subchromatic tone systems.
17#
發(fā)表于 2025-3-24 14:37:30 | 只看該作者
18#
發(fā)表于 2025-3-24 17:14:27 | 只看該作者
Towards a Categorical Theory of Creativity for Music, Discourse, and Cognitionivity, discourse theory, and cognition, suggests the relevance of the notion of “colimit” as a unifying construction in the three domains as well as the central role played by the Yoneda Lemma in the categorical formalization of creative processes.
19#
發(fā)表于 2025-3-24 19:18:29 | 只看該作者
20#
發(fā)表于 2025-3-25 02:24:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 14:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
塔河县| 顺平县| 麻阳| 沾益县| 栾城县| 札达县| 阿克苏市| 澄城县| 武定县| 富平县| 禄丰县| 临高县| 宝应县| 大厂| 平凉市| 江孜县| 巴彦县| 柳江县| 金川县| 洛宁县| 北宁市| 若羌县| 吴堡县| 平果县| 饶阳县| 鲁甸县| 汉沽区| 岳池县| 西丰县| 东兴市| 新巴尔虎右旗| 灌阳县| 洛川县| 高安市| 民丰县| 安徽省| 修文县| 敦化市| 毕节市| 东城区| 登封市|