找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics and Computation in Music; Third International Carlos Agon,Moreno Andreatta,John Mandereau Conference proceedings 2011 Springer

[復(fù)制鏈接]
樓主: energy
31#
發(fā)表于 2025-3-26 21:11:22 | 只看該作者
32#
發(fā)表于 2025-3-27 04:03:30 | 只看該作者
33#
發(fā)表于 2025-3-27 08:59:42 | 只看該作者
Building Topological Spaces for Musical Objectsvel classifications and provides new computational tools. In this paper, we show how a topological representation for .-note chords associated with the degrees of the diatonic scale and for the All-Interval Series (AIS) can be automatically built using ., a rule-based spatial programming language. T
34#
發(fā)表于 2025-3-27 12:26:29 | 只看該作者
A Model for Collective Free Improvisationsome interesting mechanisms of CFI. We use two variables: the . and the .. Both variables are used to describe the production and organization of the improvisers’ signals. Using a system of Landau equations, we propose a non-linear dynamics for the intention evolving on a short time-scale while the
35#
發(fā)表于 2025-3-27 16:12:03 | 只看該作者
36#
發(fā)表于 2025-3-27 18:15:48 | 只看該作者
37#
發(fā)表于 2025-3-27 22:05:46 | 只看該作者
38#
發(fā)表于 2025-3-28 02:07:59 | 只看該作者
Spelled Heptachordsmetries of spc space are transposition and inversion along the line of fifths. Because of the inextricable link between pitch spelling and diatonic scales, ..—seven-note spc sets that include each letter name exactly once—occupy a privileged position in this theory. Spelled heptachords may be regard
39#
發(fā)表于 2025-3-28 06:41:05 | 只看該作者
Fundamental Passacaglia: Harmonic Functions and the Modes of the Musical Tetractysby a dialectical interpretation—and redeploy them within an alternative theoretical framework: the combinatorics of the modes of the musical ., enriched by musical-theoretical interpretations of selected mathematical facts. Section 1 introduces tonal perspectives of the analysis of the fundamental b
40#
發(fā)表于 2025-3-28 13:29:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 11:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
益阳市| 民勤县| 浦北县| 石景山区| 龙川县| 元朗区| 望谟县| 临邑县| 如东县| 石林| 庐江县| 龙海市| 利津县| 酒泉市| 六安市| 德昌县| 西乌珠穆沁旗| 什邡市| 福海县| 安乡县| 绥阳县| 洪洞县| 通山县| 应用必备| 潜江市| 思南县| 呼和浩特市| 和田县| 喜德县| 伊金霍洛旗| 涟水县| 安徽省| 鱼台县| 新疆| 麦盖提县| 团风县| 北安市| 长沙县| 山东| 思茅市| 宝清县|