找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics and Computation in Music; Third International Carlos Agon,Moreno Andreatta,John Mandereau Conference proceedings 2011 Springer

[復制鏈接]
樓主: energy
31#
發(fā)表于 2025-3-26 21:11:22 | 只看該作者
32#
發(fā)表于 2025-3-27 04:03:30 | 只看該作者
33#
發(fā)表于 2025-3-27 08:59:42 | 只看該作者
Building Topological Spaces for Musical Objectsvel classifications and provides new computational tools. In this paper, we show how a topological representation for .-note chords associated with the degrees of the diatonic scale and for the All-Interval Series (AIS) can be automatically built using ., a rule-based spatial programming language. T
34#
發(fā)表于 2025-3-27 12:26:29 | 只看該作者
A Model for Collective Free Improvisationsome interesting mechanisms of CFI. We use two variables: the . and the .. Both variables are used to describe the production and organization of the improvisers’ signals. Using a system of Landau equations, we propose a non-linear dynamics for the intention evolving on a short time-scale while the
35#
發(fā)表于 2025-3-27 16:12:03 | 只看該作者
36#
發(fā)表于 2025-3-27 18:15:48 | 只看該作者
37#
發(fā)表于 2025-3-27 22:05:46 | 只看該作者
38#
發(fā)表于 2025-3-28 02:07:59 | 只看該作者
Spelled Heptachordsmetries of spc space are transposition and inversion along the line of fifths. Because of the inextricable link between pitch spelling and diatonic scales, ..—seven-note spc sets that include each letter name exactly once—occupy a privileged position in this theory. Spelled heptachords may be regard
39#
發(fā)表于 2025-3-28 06:41:05 | 只看該作者
Fundamental Passacaglia: Harmonic Functions and the Modes of the Musical Tetractysby a dialectical interpretation—and redeploy them within an alternative theoretical framework: the combinatorics of the modes of the musical ., enriched by musical-theoretical interpretations of selected mathematical facts. Section 1 introduces tonal perspectives of the analysis of the fundamental b
40#
發(fā)表于 2025-3-28 13:29:56 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 13:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
四子王旗| 阿勒泰市| 丹巴县| 平湖市| 济宁市| 秦安县| 同德县| 方城县| 正镶白旗| 荥经县| 肇庆市| 常宁市| 偃师市| 冀州市| 沅江市| 平定县| 桃园县| 永嘉县| 喜德县| 长宁区| 宝兴县| 康乐县| 清水河县| 张掖市| 吴忠市| 海安县| 英德市| 博客| 新绛县| 万年县| 新田县| 璧山县| 运城市| 张家港市| 乐昌市| 潞西市| 林芝县| 无锡市| 土默特右旗| 鄂伦春自治旗| 镇原县|