找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics Inspired by Biology; Lectures given at th Odo Diekmann,Richard Durrett,Hal Smith,Vincenzo Ca Book 1999 Springer-Verlag Berlin H

[復(fù)制鏈接]
查看: 52602|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:56:41 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Mathematics Inspired by Biology
副標(biāo)題Lectures given at th
編輯Odo Diekmann,Richard Durrett,Hal Smith,Vincenzo Ca
視頻videohttp://file.papertrans.cn/627/626781/626781.mp4
概述Includes supplementary material:
叢書(shū)名稱Lecture Notes in Mathematics
圖書(shū)封面Titlebook: Mathematics Inspired by Biology; Lectures given at th Odo Diekmann,Richard Durrett,Hal Smith,Vincenzo Ca Book 1999 Springer-Verlag Berlin H
描述The summer school on Mathematics inspired by Biology was held at Martina Franca, Apulia, Italy in 1997. This volume presents five series of six lectures each. The common theme is the role of structure in shaping transient and ultimate dynamics. But the type of structure ranges from spatial (hadeler and maini in the deterministic setting, Durrett in the stochastic setting) to physiological (Diekmann) and order (Smith). Each contribution sketches the present state of affairs while, by including some wishful thinking, pointing at open problems that deserve attention.
出版日期Book 1999
關(guān)鍵詞Rang; biology; dynamics; mathematical biology; mathematics; morphogenesis; population
版次1
doihttps://doi.org/10.1007/BFb0092373
isbn_softcover978-3-540-66522-9
isbn_ebook978-3-540-48170-6Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1999
The information of publication is updating

書(shū)目名稱Mathematics Inspired by Biology影響因子(影響力)




書(shū)目名稱Mathematics Inspired by Biology影響因子(影響力)學(xué)科排名




書(shū)目名稱Mathematics Inspired by Biology網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Mathematics Inspired by Biology網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Mathematics Inspired by Biology被引頻次




書(shū)目名稱Mathematics Inspired by Biology被引頻次學(xué)科排名




書(shū)目名稱Mathematics Inspired by Biology年度引用




書(shū)目名稱Mathematics Inspired by Biology年度引用學(xué)科排名




書(shū)目名稱Mathematics Inspired by Biology讀者反饋




書(shū)目名稱Mathematics Inspired by Biology讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:38:31 | 只看該作者
Mathematics Inspired by Biology978-3-540-48170-6Series ISSN 0075-8434 Series E-ISSN 1617-9692
板凳
發(fā)表于 2025-3-22 01:38:14 | 只看該作者
https://doi.org/10.1007/BFb0092373Rang; biology; dynamics; mathematical biology; mathematics; morphogenesis; population
地板
發(fā)表于 2025-3-22 05:41:19 | 只看該作者
Odo Diekmann,Richard Durrett,Hal Smith,Vincenzo CaIncludes supplementary material:
5#
發(fā)表于 2025-3-22 08:52:57 | 只看該作者
6#
發(fā)表于 2025-3-22 16:46:26 | 只看該作者
Rick Durrett static response in second order phase transitions, there is a very strong universality which tells us that it is only the dimensionality of the order parameter which determines universality classes. Consequently, the best known critical phenomenon which is the critical point of a liquid-vapour syst
7#
發(fā)表于 2025-3-22 18:38:16 | 只看該作者
8#
發(fā)表于 2025-3-23 01:12:44 | 只看該作者
Philip K. Mainibecause of the properties showed by the two kinds of processes. Effectively, a long-term memory process, like an Arfima process, is a stochastic one, while a chaotic process is by definition a deterministic one. However, this question finds its origins in recent works of Peters (1991, 1994) setting
9#
發(fā)表于 2025-3-23 03:42:46 | 只看該作者
10#
發(fā)表于 2025-3-23 07:52:15 | 只看該作者
because of the properties showed by the two kinds of processes. Effectively, a long-term memory process, like an Arfima process, is a stochastic one, while a chaotic process is by definition a deterministic one. However, this question finds its origins in recent works of Peters (1991, 1994) setting
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 08:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄石市| 舒兰市| 奈曼旗| 马边| 墨玉县| 易门县| 布尔津县| 万山特区| 伊川县| 兴海县| 天门市| 建瓯市| 台中市| 阳新县| 黄石市| 商洛市| 嘉荫县| 阜宁县| 岑溪市| 神木县| 文水县| 靖边县| 鲁甸县| 伊宁县| 苏尼特左旗| 武宣县| 麟游县| 盐亭县| 兰州市| 隆化县| 达拉特旗| 永春县| 竹溪县| 郴州市| 陕西省| 霍邱县| 商水县| 荥阳市| 安乡县| 东阿县| 利辛县|