找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Software - ICMS 2006; Second International Andrés Iglesias,Nobuki Takayama Conference proceedings 2006 Springer-Verlag Berlin

[復(fù)制鏈接]
樓主: DUBIT
21#
發(fā)表于 2025-3-25 05:02:12 | 只看該作者
22#
發(fā)表于 2025-3-25 08:18:28 | 只看該作者
23#
發(fā)表于 2025-3-25 15:28:41 | 只看該作者
24#
發(fā)表于 2025-3-25 18:52:11 | 只看該作者
GCLC — A Tool for Constructive Euclidean Geometry and More Than Thatng mathematical illustrations of high quality. . uses a language . for declarative representation of figures and for storing mathematical contents of visual nature in textual form. In ., there is a build-in geometrical theorem prover which directly links visual and semantical geometrical information
25#
發(fā)表于 2025-3-25 21:55:04 | 只看該作者
26#
發(fā)表于 2025-3-26 03:24:19 | 只看該作者
MuPAD’s Graphics Systemf graphical objects that are fully manipulable from the programming level as well as interactively, the framework has proven to be well-designed and flexible. We will present both the users’ and the developers’ perspective, including how to implement new graphical primitives and a discussion of curr
27#
發(fā)表于 2025-3-26 06:47:07 | 只看該作者
An Efficient Implementation for Computing Gr?bner Bases over Algebraic Number Fieldshe computation is often inefficient if the field operations for algebraic numbers are directly used. Instead we can execute the algorithm over the rationals by adding the defining polynomials to the input ideal and by setting an elimination order. In this paper we propose another method, which is a
28#
發(fā)表于 2025-3-26 11:27:57 | 只看該作者
The SARAG Library: Some Algorithms in Real Algebraic GeometrySome Algorithms in Real Algebraic Geometry” and has two main applications: extending the capabilities of Maxima in the field of real algebraic geometry and being part of the interactive version of the book “Algorithms in Real Algebraic Geometry” by S. Basu, R. Pollack, M.-F. Roy, which can be now fr
29#
發(fā)表于 2025-3-26 14:03:05 | 只看該作者
Algebraic Computation of Some Intersection D-Modulesd . the local system of horizontal sections of . on .–.. Let . be the holonomic regular .-module whose de Rham complex is the intersection complex . of Deligne-Goresky-MacPherson. In this paper we show how to use our previous results on the algebraic description of . in order to obtain explicit pres
30#
發(fā)表于 2025-3-26 18:58:58 | 只看該作者
,, a Non–commutative Extension of Singular: Past, Present and Futureation within a wide class of non–commutative algebras. We discuss the computational objects of ., the implementation of main algorithms, various aspects of software engineering and numerous applications.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 07:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐陵市| 东乌珠穆沁旗| 拉孜县| 容城县| 平安县| 苍溪县| 白水县| 泾川县| 庆云县| 乌拉特后旗| 常德市| 夏河县| 苏州市| 逊克县| 辰溪县| 乌海市| 邯郸县| 秦皇岛市| 咸宁市| 安岳县| 冀州市| 佛山市| 葵青区| 文水县| 卢湾区| 绥中县| 城市| 新疆| 襄汾县| 建阳市| 贵溪市| 茶陵县| 四川省| 拉孜县| 安岳县| 赤壁市| 即墨市| 东平县| 临潭县| 昌黎县| 达尔|