找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Problems of the Dynamics of Incompressible Fluid on a Rotating Sphere; Yuri N. Skiba Book 2017 Springer International Publish

[復(fù)制鏈接]
樓主: frustrate
11#
發(fā)表于 2025-3-23 11:27:22 | 只看該作者
Introduction,y-Haurwitz waves, modons, and Wu-Verkley waves..In 1950, the BVE was chosen as the first approximate model of the atmosphere in the general plan of attacking the problem of numerical weather prediction. Also, in the case of an ideal fluid, the conservation laws for a BVE solution allowed studying th
12#
發(fā)表于 2025-3-23 17:34:37 | 只看該作者
13#
發(fā)表于 2025-3-23 20:52:13 | 只看該作者
14#
發(fā)表于 2025-3-24 00:39:52 | 只看該作者
15#
發(fā)表于 2025-3-24 05:51:37 | 只看該作者
Stability of Rossby-Haurwitz (RH) Waves,ry BVE solutions as the Legendre polynomial (LP) flow, RH wave, WV wave, and modons..This chapter is devoted to the stability of the Rossby-Haurwitz waves and LP flows. In Sect.?., we derive a conservation law for arbitrary perturbations of LP flow and RH wave. Invariant sets (..., ., ......, and .,
16#
發(fā)表于 2025-3-24 07:23:16 | 只看該作者
17#
發(fā)表于 2025-3-24 12:24:58 | 只看該作者
Linear and Nonlinear Stability of Flows, and Haynes set limits on the growth rate of unstable modes and provide information on the time–space structure of unstable disturbances. Nevertheless, the effectiveness of the necessary conditions for instability can be quite scanty. For example, any sufficiently strong LP flow of degree . ≥ 3 sati
18#
發(fā)表于 2025-3-24 15:07:58 | 只看該作者
19#
發(fā)表于 2025-3-24 19:11:40 | 只看該作者
20#
發(fā)表于 2025-3-25 00:43:28 | 只看該作者
Mathematical Problems of the Dynamics of Incompressible Fluid on a Rotating Sphere
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 15:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐东| 濮阳县| 呼伦贝尔市| 阳春市| 玛纳斯县| 岳阳县| 泰兴市| 太康县| 庄河市| 神池县| 金川县| 祁连县| 项城市| 阿尔山市| 红桥区| 济宁市| 藁城市| 济南市| 宁河县| 浦江县| 荣昌县| 弋阳县| 江津市| 类乌齐县| 吉林省| 齐河县| 柏乡县| 洪泽县| 饶平县| 上林县| 从化市| 尼玛县| 基隆市| 调兵山市| 扎鲁特旗| 台山市| 新密市| 洛扎县| 凯里市| 平罗县| 北辰区|