找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Principle and Fractal Analysis of Mesoscale Eddy; Shu-Tang Liu,Yu-Pin Wang,Yin Wang Book 2021 The Editor(s) (if applicable) a

[復制鏈接]
查看: 39405|回復: 57
樓主
發(fā)表于 2025-3-21 18:42:21 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Mathematical Principle and Fractal Analysis of Mesoscale Eddy
編輯Shu-Tang Liu,Yu-Pin Wang,Yin Wang
視頻videohttp://file.papertrans.cn/627/626516/626516.mp4
概述Presents the universal nonlinear dynamics model of mesoscale eddy.Studies comprehensively mesoscale eddy.Provides in-depth treatment of fractal analysis and prediction of mesoscale eddy
圖書封面Titlebook: Mathematical Principle and Fractal Analysis of Mesoscale Eddy;  Shu-Tang Liu,Yu-Pin Wang,Yin Wang Book 2021 The Editor(s) (if applicable) a
描述This book focuses on universal nonlinear dynamics model of mesoscale eddies. The results of this book are not only the direct-type applications of pure mathematical limit cycle theory and fractal theory in practice but also the classic combination of nonlinear dynamic systems in mathematics and the physical oceanography. The universal model and experimental verification not only verify the relevant results that are obtained by Euler‘s form but also, more importantly, are consistent with observational numerical statistics. Due to the universality of the model, the consequences of the system are richer and more complete..?.The comprehensive and systematic mathematical modeling of mesoscale eddies is one of the major features of the book, which is particularly suited for readers who are interested to learn fractal analysis and prediction in physical oceanography. The book benefits researchers, engineers, and graduate students in the fields of mesoscale eddies, fractal, chaos, and other applications, etc..
出版日期Book 2021
關鍵詞Mesoscale; eddy; Limit cycle; Fractal; Chaos Dimension
版次1
doihttps://doi.org/10.1007/978-981-16-1839-0
isbn_softcover978-981-16-1841-3
isbn_ebook978-981-16-1839-0
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Mathematical Principle and Fractal Analysis of Mesoscale Eddy影響因子(影響力)




書目名稱Mathematical Principle and Fractal Analysis of Mesoscale Eddy影響因子(影響力)學科排名




書目名稱Mathematical Principle and Fractal Analysis of Mesoscale Eddy網(wǎng)絡公開度




書目名稱Mathematical Principle and Fractal Analysis of Mesoscale Eddy網(wǎng)絡公開度學科排名




書目名稱Mathematical Principle and Fractal Analysis of Mesoscale Eddy被引頻次




書目名稱Mathematical Principle and Fractal Analysis of Mesoscale Eddy被引頻次學科排名




書目名稱Mathematical Principle and Fractal Analysis of Mesoscale Eddy年度引用




書目名稱Mathematical Principle and Fractal Analysis of Mesoscale Eddy年度引用學科排名




書目名稱Mathematical Principle and Fractal Analysis of Mesoscale Eddy讀者反饋




書目名稱Mathematical Principle and Fractal Analysis of Mesoscale Eddy讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:24:56 | 只看該作者
http://image.papertrans.cn/m/image/626516.jpg
板凳
發(fā)表于 2025-3-22 03:33:59 | 只看該作者
https://doi.org/10.1007/978-981-16-1839-0Mesoscale; eddy; Limit cycle; Fractal; Chaos Dimension
地板
發(fā)表于 2025-3-22 05:24:18 | 只看該作者
Introduction,A brief review of the research history and current situation of mesoscale vortices is given to clarify the original intention and significance of this work.
5#
發(fā)表于 2025-3-22 11:48:46 | 只看該作者
6#
發(fā)表于 2025-3-22 13:18:13 | 只看該作者
7#
發(fā)表于 2025-3-22 17:23:50 | 只看該作者
8#
發(fā)表于 2025-3-22 23:43:42 | 只看該作者
9#
發(fā)表于 2025-3-23 01:25:46 | 只看該作者
10#
發(fā)表于 2025-3-23 06:23:18 | 只看該作者
Mesoscale Eddies: Disk and Columnar Shapes,There are two forms of mesoscale eddies, namely, disk-shaped mesoscale eddies whose diameter is larger than that of the mesoscale eddy axis and cylindrical vortices whose diameter is smaller than that of the mesoscale eddy axis. Usually, the mesoscale eddy is a disk-shaped one, which is also our focus.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 00:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
上犹县| 四川省| 策勒县| 长治县| 寿宁县| 梅河口市| 彰化县| 永德县| 通海县| 上高县| 鹤峰县| 齐齐哈尔市| 大关县| 巴彦淖尔市| 霍山县| 民和| 武陟县| 成安县| 凤山县| 定边县| 宁波市| 大新县| 潞西市| 临城县| 宁阳县| 新兴县| 英德市| 会东县| 拜城县| 玉溪市| 长寿区| 罗田县| 东明县| 抚远县| 武平县| 尉氏县| 陈巴尔虎旗| 香河县| 绍兴市| 五家渠市| 定远县|