找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Portfolio Theory and Analysis; Siddhartha Pratim Chakrabarty,Ankur Kanaujiya Textbook 2023 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: Scuttle
11#
發(fā)表于 2025-3-23 11:07:12 | 只看該作者
12#
發(fā)表于 2025-3-23 16:57:00 | 只看該作者
13#
發(fā)表于 2025-3-23 20:24:56 | 只看該作者
14#
發(fā)表于 2025-3-23 23:55:47 | 只看該作者
Mean-Variance Portfolio Theory,Given the huge array of investment alternatives available in a market, such as basic securities and derivatives, the investors’ choice needs to be made simply by taking into consideration only a limited number of such alternatives, to achieve an optimal collection of such assets or the best possible portfolio.
15#
發(fā)表于 2025-3-24 05:04:22 | 只看該作者
16#
發(fā)表于 2025-3-24 09:18:43 | 只看該作者
Non-Mean-Variance Portfolio Theory,The discussion on the Markowitz theory and the CAPM was based on the mean-variance framework, wherein the assumption was that the assets follow a normal distribution or that the investors prefer the mean-variance framework.
17#
發(fā)表于 2025-3-24 14:04:42 | 只看該作者
Optimal Portfolio Strategies,In this chapter, we consider optimization approaches in investment decisions, both in the discrete time and the continuous time setup, making use of the Dynamic Programming Principle and the Hamilton-Jacobi-Bellman equation, respectively.
18#
發(fā)表于 2025-3-24 17:51:31 | 只看該作者
,Risk Management of?Portfolios,In the course of our discussion on portfolio analysis, we have primarily identified variance and semi-variance (or equivalently standard deviation and semi-deviation, respectively) as measures of risk of an asset or a portfolio.
19#
發(fā)表于 2025-3-24 20:39:30 | 只看該作者
Siddhartha Pratim Chakrabarty,Ankur KanaujiyaBridges the gap between basic management and advanced mathematical topics on portfolio theory.Highlights topics on optimal portfolio strategies, bond portfolio optimization, and risk management of por
20#
發(fā)表于 2025-3-25 03:10:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 12:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桃园市| 平谷区| 固安县| 广灵县| 南京市| 久治县| 宿迁市| 伊川县| 弋阳县| 肇源县| 常德市| 凌海市| 双柏县| 曲阜市| 哈尔滨市| 淳化县| 靖边县| 大连市| 家居| 吉木萨尔县| 繁昌县| 华阴市| 藁城市| 成安县| 和龙市| 泰兴市| 彭阳县| 吐鲁番市| 河北省| 安平县| 繁昌县| 浏阳市| 湖口县| 津南区| 海门市| 酉阳| 会同县| 长沙市| 澄江县| 台北市| 和林格尔县|