找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Portfolio Theory and Analysis; Siddhartha Pratim Chakrabarty,Ankur Kanaujiya Textbook 2023 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: Scuttle
11#
發(fā)表于 2025-3-23 11:07:12 | 只看該作者
12#
發(fā)表于 2025-3-23 16:57:00 | 只看該作者
13#
發(fā)表于 2025-3-23 20:24:56 | 只看該作者
14#
發(fā)表于 2025-3-23 23:55:47 | 只看該作者
Mean-Variance Portfolio Theory,Given the huge array of investment alternatives available in a market, such as basic securities and derivatives, the investors’ choice needs to be made simply by taking into consideration only a limited number of such alternatives, to achieve an optimal collection of such assets or the best possible portfolio.
15#
發(fā)表于 2025-3-24 05:04:22 | 只看該作者
16#
發(fā)表于 2025-3-24 09:18:43 | 只看該作者
Non-Mean-Variance Portfolio Theory,The discussion on the Markowitz theory and the CAPM was based on the mean-variance framework, wherein the assumption was that the assets follow a normal distribution or that the investors prefer the mean-variance framework.
17#
發(fā)表于 2025-3-24 14:04:42 | 只看該作者
Optimal Portfolio Strategies,In this chapter, we consider optimization approaches in investment decisions, both in the discrete time and the continuous time setup, making use of the Dynamic Programming Principle and the Hamilton-Jacobi-Bellman equation, respectively.
18#
發(fā)表于 2025-3-24 17:51:31 | 只看該作者
,Risk Management of?Portfolios,In the course of our discussion on portfolio analysis, we have primarily identified variance and semi-variance (or equivalently standard deviation and semi-deviation, respectively) as measures of risk of an asset or a portfolio.
19#
發(fā)表于 2025-3-24 20:39:30 | 只看該作者
Siddhartha Pratim Chakrabarty,Ankur KanaujiyaBridges the gap between basic management and advanced mathematical topics on portfolio theory.Highlights topics on optimal portfolio strategies, bond portfolio optimization, and risk management of por
20#
發(fā)表于 2025-3-25 03:10:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 15:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿克苏市| 高雄县| 郎溪县| 昌都县| 通山县| 澜沧| 安溪县| 内丘县| 鹤山市| 柳江县| 酒泉市| 成都市| 固阳县| 泗洪县| 乌拉特后旗| 阜新| 定兴县| 佳木斯市| 石泉县| 巍山| 彩票| 塘沽区| 抚远县| 潜山县| 修水县| 浙江省| 天祝| 宜川县| 太白县| 北流市| 革吉县| 永寿县| 东安县| 涡阳县| 同心县| 沙河市| 普定县| 大冶市| 东源县| 上高县| 榆中县|