找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Physics and Its Interactions; In Honor of the 60th Shuji Machihara Conference proceedings 2024 The Editor(s) (if applicable) a

[復(fù)制鏈接]
樓主: ATE
21#
發(fā)表于 2025-3-25 04:53:05 | 只看該作者
Conference proceedings 2024ysics and Its Interactions,‘ initially scheduled for the summer of 2021 in Tokyo, Japan. It celebrates Tohru Ozawa‘s 60th birthday and his extensive contributions in many fields..The works gathered in this volume explore interactions between mathematical physics, various types of partial differentia
22#
發(fā)表于 2025-3-25 07:58:55 | 只看該作者
,Convexity Phenomena Arising in?an?Area-Preserving Crystalline Curvature Flow,om a non-convex initial polygon becomes convex in a finite time. In order to show this assertion, we classify edge-disappearing patterns completely and prove that all zero-curvature edges disappear in a finite time, and we also show that evolution process of the flow can be continued beyond such edge-disappearing singularities.
23#
發(fā)表于 2025-3-25 15:06:59 | 只看該作者
24#
發(fā)表于 2025-3-25 19:45:23 | 只看該作者
,Asymptotic Behavior in Time of Solution to System of Cubic Nonlinear Schr?dinger Equations in One Sis kind of behavior seems new. Further, several examples of systems which admit solution with several types of behavior such as modified scattering, nonlinear amplification, and nonlinear dissipation, are given. We also extend our previous classification result of nonlinear cubic systems.
25#
發(fā)表于 2025-3-25 23:58:14 | 只看該作者
26#
發(fā)表于 2025-3-26 03:01:55 | 只看該作者
27#
發(fā)表于 2025-3-26 05:44:15 | 只看該作者
,Remarks on Blow up of Solutions of Nonlinear Wave Equations in?Friedmann-Lema?tre-Robertson-Walker?Consider nonlinear wave equations in the spatially flat Friedmann-Lema?tre-Robertson-Walker (FLRW) spacetimes. We improve some upper bounds of the lifespan of blow-up solutions for the power nonlinearity. We also show upper bounds of the lifespan in the critical cases for the time derivative nonlinearity.
28#
發(fā)表于 2025-3-26 09:19:13 | 只看該作者
29#
發(fā)表于 2025-3-26 15:38:53 | 只看該作者
30#
發(fā)表于 2025-3-26 18:12:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
彭泽县| 鹤岗市| 漳州市| 宜兰县| 德清县| 榆树市| 南皮县| 海原县| 新田县| 临泉县| 肃宁县| 浦北县| 益阳市| 墨脱县| 萝北县| 鹤岗市| 通辽市| 石台县| 邻水| 聂拉木县| 桐庐县| 博罗县| 攀枝花市| 绥中县| 岳阳县| 冕宁县| 锦屏县| 林周县| 布拖县| 神木县| 吴江市| 于都县| 图片| 黎城县| 龙江县| 甘肃省| 常宁市| 贞丰县| 揭西县| 苍溪县| 湖北省|