找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Physics X; Proceedings of the X Konrad Schmüdgen Conference proceedings 1992 Springer-Verlag Berlin Heidelberg 1992 (Nichtkomm

[復(fù)制鏈接]
樓主: 矜持
11#
發(fā)表于 2025-3-23 10:48:10 | 只看該作者
Dynamical Zeta Functions: Where Do They Come from and What Are They Good for ?The properties and usefulness of dynamical zeta functions associated with maps and flows are discussed, and they are compared with the more traditional number-theoretic zeta functions.
12#
發(fā)表于 2025-3-23 15:17:38 | 只看該作者
13#
發(fā)表于 2025-3-23 18:01:09 | 只看該作者
14#
發(fā)表于 2025-3-23 22:25:22 | 只看該作者
15#
發(fā)表于 2025-3-24 02:20:48 | 只看該作者
Asymptotic Completeness for ,-Body Quantum SystemsWe give a sketch of a geometrical proof of asymptotic completeness for an arbitrary number of quantum particles interacting through short-range pair potentials.
16#
發(fā)表于 2025-3-24 09:49:28 | 只看該作者
17#
發(fā)表于 2025-3-24 11:31:10 | 只看該作者
18#
發(fā)表于 2025-3-24 15:16:41 | 只看該作者
19#
發(fā)表于 2025-3-24 21:13:36 | 只看該作者
Mathematical Theory of Classical Fields and General Relativitye success of Riemann’s visionary ideas in the formulation of General Relativity, have stayed away, with few notable exceptions, from the fundamental new twist given to them by Einstein who replaced the positive definite metric of Riemannian Geometry by a Lorentzian, or more appropriate, Einsteinian metric.
20#
發(fā)表于 2025-3-25 01:45:06 | 只看該作者
Hamiltonian Methods in Conformal Field Theoryl them the conformists to distinguish from die konformisten). New terminology and methodology, e.g. primary fields, vertex operators, operator expansion, mixing of states and operators is indispensable for the paper on CFT.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 20:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
布拖县| 临桂县| 萝北县| 喀喇沁旗| 荔波县| 涞源县| 博爱县| 巴塘县| 进贤县| 高安市| 唐河县| 皋兰县| 赣州市| 宾川县| 平陆县| 永年县| 中宁县| 比如县| 建德市| 齐河县| 许昌市| 新密市| 福泉市| 石楼县| 开化县| 广德县| 江都市| 苗栗县| 安庆市| 鹤山市| 玉山县| 陈巴尔虎旗| 奉节县| 金溪县| 治县。| 阿图什市| 古蔺县| 榆中县| 山阳县| 武义县| 内乡县|