找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Models and Numerical Simulation in Electromagnetism; Alfredo Bermúdez,Dolores Gómez,Pilar Salgado Textbook 2014 Springer Inte

[復制鏈接]
樓主: invoke
41#
發(fā)表于 2025-3-28 15:54:18 | 只看該作者
42#
發(fā)表于 2025-3-28 19:52:26 | 只看該作者
Some solutions of Maxwell’s equations in free spacece of charges and currents. Thus, we consider classical examples in electrostatics and magnetostatics. By choosing suitable sets . and . in the integral form of Maxwell’s equations we will be able to obtain the electromagnetic fields.
43#
發(fā)表于 2025-3-28 23:42:11 | 只看該作者
Electrostaticsntial simpli-fications. For example, in electrostatics, charges do not move so there are no currents and then the magnetic field is null. In this chapter, we will study this model in terms of the electrostatic potential and introduce the concept of capacitance.
44#
發(fā)表于 2025-3-29 05:20:42 | 只看該作者
The eddy currents modelthe Ampère’s law. We will study this model in the time-harmonic regime and in bounded threedimensional and two-dimensional domains by using different unknowns. At the end of the chapter we give a brief description of the coupling between the eddy currents model and a lumped circuit model.
45#
發(fā)表于 2025-3-29 08:14:45 | 只看該作者
46#
發(fā)表于 2025-3-29 12:33:24 | 只看該作者
47#
發(fā)表于 2025-3-29 17:38:50 | 只看該作者
48#
發(fā)表于 2025-3-29 22:28:32 | 只看該作者
49#
發(fā)表于 2025-3-30 02:42:44 | 只看該作者
Eddy currents with MaxFEMIn this chapter we solve several examples governed by the time-harmonic eddy currents model by using MaxFEM. For some of the problems we will provide the analytical and the numerical solution. We exploit that some problems can be approximated by 2D or axisymmetric models but some others will require a genuine 3D model.
50#
發(fā)表于 2025-3-30 05:29:21 | 只看該作者
https://doi.org/10.1007/978-3-319-02949-8Maxwell‘s equations; electromagnetism; linear circuits; nonlinear magnetic and hysteresis; numerical sim
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
元江| 漯河市| 屏东县| 奉新县| 罗源县| 当涂县| 汉寿县| 康马县| 大关县| 林州市| 南汇区| 肥乡县| 古交市| 金川县| 峨眉山市| 广东省| 湘西| 上虞市| 和静县| 孝感市| 永胜县| 华蓥市| 南投县| 邹城市| 黔西| 赣榆县| 满洲里市| 措美县| 沙湾县| 临泉县| 宁乡县| 锦屏县| 平舆县| 犍为县| 宝兴县| 县级市| 凤庆县| 贡觉县| 昌宁县| 潜江市| 磐安县|