找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Methods of Classical Mechanics; V. I. Arnold Textbook 19781st edition Springer Science+Business Media New York 1978 Hamiltoni

[復(fù)制鏈接]
查看: 15525|回復(fù): 45
樓主
發(fā)表于 2025-3-21 17:17:06 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Mathematical Methods of Classical Mechanics
編輯V. I. Arnold
視頻videohttp://file.papertrans.cn/627/626283/626283.mp4
叢書名稱Graduate Texts in Mathematics
圖書封面Titlebook: Mathematical Methods of Classical Mechanics;  V. I. Arnold Textbook 19781st edition Springer Science+Business Media New York 1978 Hamiltoni
描述Many different mathematical methods and concepts are used in classical mechanics: differential equations and phase ftows, smooth mappings and manifolds, Lie groups and Lie algebras, symplectic geometry and ergodic theory. Many modern mathematical theories arose from problems in mechanics and only later acquired that axiomatic-abstract form which makes them so hard to study. In this book we construct the mathematical apparatus of classical mechanics from the very beginning; thus, the reader is not assumed to have any previous knowledge beyond standard courses in analysis (differential and integral calculus, differential equations), geometry (vector spaces, vectors) and linear algebra (linear operators, quadratic forms). With the help of this apparatus, we examine all the basic problems in dynamics, including the theory of oscillations, the theory of rigid body motion, and the hamiltonian formalism. The author has tried to show the geometric, qualitative aspect of phenomena. In this respect the book is closer to courses in theoretical mechanics for theoretical physicists than to traditional courses in theoretical mechanics as taught by mathematicians.
出版日期Textbook 19781st edition
關(guān)鍵詞Hamiltonian; Lie; Mathematica; Newtonian mechanics; algebra; calculus; classical mechanics; differential eq
版次1
doihttps://doi.org/10.1007/978-1-4757-1693-1
isbn_ebook978-1-4757-1693-1Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer Science+Business Media New York 1978
The information of publication is updating

書目名稱Mathematical Methods of Classical Mechanics影響因子(影響力)




書目名稱Mathematical Methods of Classical Mechanics影響因子(影響力)學(xué)科排名




書目名稱Mathematical Methods of Classical Mechanics網(wǎng)絡(luò)公開(kāi)度




書目名稱Mathematical Methods of Classical Mechanics網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Mathematical Methods of Classical Mechanics被引頻次




書目名稱Mathematical Methods of Classical Mechanics被引頻次學(xué)科排名




書目名稱Mathematical Methods of Classical Mechanics年度引用




書目名稱Mathematical Methods of Classical Mechanics年度引用學(xué)科排名




書目名稱Mathematical Methods of Classical Mechanics讀者反饋




書目名稱Mathematical Methods of Classical Mechanics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:12:39 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:40:16 | 只看該作者
地板
發(fā)表于 2025-3-22 06:40:35 | 只看該作者
5#
發(fā)表于 2025-3-22 10:44:22 | 只看該作者
6#
發(fā)表于 2025-3-22 14:05:45 | 只看該作者
Canonical formalismton and Jacobi, is the most powerful method available for integrating the differential equations of dynamics. In addition to this technique, the chapter contains an “odd-dimensional” approach to hamiltonian phase flows.
7#
發(fā)表于 2025-3-22 19:28:28 | 只看該作者
8#
發(fā)表于 2025-3-22 22:12:46 | 只看該作者
9#
發(fā)表于 2025-3-23 01:57:22 | 只看該作者
10#
發(fā)表于 2025-3-23 08:24:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 16:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沛县| 班戈县| 汉阴县| 遂川县| 浏阳市| 清远市| 湖南省| 霍城县| 科技| 深水埗区| 兴安盟| 千阳县| 和政县| 资源县| 政和县| 佛教| 福州市| 唐山市| 额济纳旗| 门头沟区| 眉山市| 蒙山县| 高邮市| 贞丰县| 郓城县| 巴塘县| 阳信县| 顺平县| 灵宝市| 堆龙德庆县| 中山市| 乌苏市| 内乡县| 钦州市| 迁西县| 长子县| 修武县| 岐山县| 栾城县| 阿尔山市| 大新县|