找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Methods for Engineering Applications; ICMASE 2021, Salaman Fatih Yilmaz,Araceli Queiruga-Dios,Jesús Martín Va Conference proce

[復(fù)制鏈接]
樓主: GERM
41#
發(fā)表于 2025-3-28 18:16:26 | 只看該作者
Sylvester Sums on the Frobenius Set in Arithmetic Progression, sum (.) and the weighed sum (.), where . forms arithmetic progressions. As applications, various other cases are also considered, including weighted sums, almost arithmetic sequences, arithmetic sequences with an additional term, and geometric-like sequences. Several examples illustrate and confirm our results.
42#
發(fā)表于 2025-3-28 20:52:35 | 只看該作者
,Generalized Riesz Potential Operator in?the Modified Morrey Spaces,r one ., for . and from . to the weak modified Morrey spaces ., for .. We get the boundedness of our two-operators . and . in the modified Morrey spaces . using the local estimate given in the Lemma ..
43#
發(fā)表于 2025-3-28 23:40:47 | 只看該作者
44#
發(fā)表于 2025-3-29 04:47:55 | 只看該作者
Jointly Type-II Censored Length-Biased Exponential Distributions, of the Bayesian estimations are provided. The simulation studies are performed to evaluate the performances of the estimation methods. Finally, a numerical example is used to illustrate the theoretical outcomes.
45#
發(fā)表于 2025-3-29 10:23:50 | 只看該作者
,On Wovenness of?,-Fusion Frames,ness of .-fusion frames. This article presents characterizations of weaving .-fusion frames. Paley-Wiener type perturbations and conditions on erasure of frame components are discussed to examine wovenness.
46#
發(fā)表于 2025-3-29 11:27:52 | 只看該作者
,PQ-Calculus of Fibonacci Divisors and?Method of Images in Planar Hydrodynamics,. We show that the even hierarchy of these functions determines the flow in the annular domain, bounded by concentric circles with the ratio of radiuses in powers of the Golden ratio. As an example, complex potential and velocity field for the set of point vortices with Golden proportion of images are calculated explicitly.
47#
發(fā)表于 2025-3-29 18:18:25 | 只看該作者
48#
發(fā)表于 2025-3-29 19:52:43 | 只看該作者
49#
發(fā)表于 2025-3-30 01:08:10 | 只看該作者
Palaniswamy Revathi,Kulandaivelu Chitirakala,Appachi Vadivelvancing our understanding of the mechanical properties of polycrystalline materials. This information is essential, both for testing the assumptions and approximations used in theoretical analyses designed to predict these properties from the properties of their constituent grains, as well as for us
50#
發(fā)表于 2025-3-30 05:32:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汝南县| 潜江市| 和静县| 德格县| 宝山区| 松桃| 雅安市| 宝应县| 西贡区| 台江县| 五常市| 安多县| 兴城市| 迁西县| 高州市| 灵寿县| 漯河市| 会东县| 商南县| 南汇区| 郓城县| 奇台县| 甘南县| 梓潼县| 柞水县| 塔城市| 象山县| 靖宇县| 竹山县| 鹤峰县| 霍山县| 余干县| 都匀市| 酒泉市| 西青区| 锡林郭勒盟| 拜城县| 额济纳旗| 英德市| 扎囊县| 开江县|