找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Methods for Engineering Applications; ICMASE 2021, Salaman Fatih Yilmaz,Araceli Queiruga-Dios,Jesús Martín Va Conference proce

[復(fù)制鏈接]
樓主: GERM
41#
發(fā)表于 2025-3-28 18:16:26 | 只看該作者
Sylvester Sums on the Frobenius Set in Arithmetic Progression, sum (.) and the weighed sum (.), where . forms arithmetic progressions. As applications, various other cases are also considered, including weighted sums, almost arithmetic sequences, arithmetic sequences with an additional term, and geometric-like sequences. Several examples illustrate and confirm our results.
42#
發(fā)表于 2025-3-28 20:52:35 | 只看該作者
,Generalized Riesz Potential Operator in?the Modified Morrey Spaces,r one ., for . and from . to the weak modified Morrey spaces ., for .. We get the boundedness of our two-operators . and . in the modified Morrey spaces . using the local estimate given in the Lemma ..
43#
發(fā)表于 2025-3-28 23:40:47 | 只看該作者
44#
發(fā)表于 2025-3-29 04:47:55 | 只看該作者
Jointly Type-II Censored Length-Biased Exponential Distributions, of the Bayesian estimations are provided. The simulation studies are performed to evaluate the performances of the estimation methods. Finally, a numerical example is used to illustrate the theoretical outcomes.
45#
發(fā)表于 2025-3-29 10:23:50 | 只看該作者
,On Wovenness of?,-Fusion Frames,ness of .-fusion frames. This article presents characterizations of weaving .-fusion frames. Paley-Wiener type perturbations and conditions on erasure of frame components are discussed to examine wovenness.
46#
發(fā)表于 2025-3-29 11:27:52 | 只看該作者
,PQ-Calculus of Fibonacci Divisors and?Method of Images in Planar Hydrodynamics,. We show that the even hierarchy of these functions determines the flow in the annular domain, bounded by concentric circles with the ratio of radiuses in powers of the Golden ratio. As an example, complex potential and velocity field for the set of point vortices with Golden proportion of images are calculated explicitly.
47#
發(fā)表于 2025-3-29 18:18:25 | 只看該作者
48#
發(fā)表于 2025-3-29 19:52:43 | 只看該作者
49#
發(fā)表于 2025-3-30 01:08:10 | 只看該作者
Palaniswamy Revathi,Kulandaivelu Chitirakala,Appachi Vadivelvancing our understanding of the mechanical properties of polycrystalline materials. This information is essential, both for testing the assumptions and approximations used in theoretical analyses designed to predict these properties from the properties of their constituent grains, as well as for us
50#
發(fā)表于 2025-3-30 05:32:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凉山| 三亚市| 晋宁县| 西贡区| 雷州市| 樟树市| 永和县| 哈尔滨市| 桓台县| 永定县| 太仆寺旗| 陇川县| 新沂市| 新乐市| 东方市| 海原县| 永城市| 赣榆县| 上犹县| 桐柏县| 新疆| 陆良县| 崇礼县| 鹤峰县| 叶城县| 西平县| 安塞县| 宁武县| 兴化市| 吉林市| 泰兴市| 榆社县| 莱西市| 襄樊市| 临湘市| 甘谷县| 韩城市| 海原县| 远安县| 玉林市| 西平县|