找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Foundations of Computer Science 2011; 36th International S Filip Murlak,Piotr Sankowski Conference proceedings 2011 Springer-V

[復(fù)制鏈接]
樓主: 忠誠
11#
發(fā)表于 2025-3-23 10:35:39 | 只看該作者
Verifying Proofs in Constant Depthanguages ranging from regular to .-complete. On the other hand, we show by combinatorial methods that even easy regular languages such as Exact-OR do not admit . proof systems. We also present a general construction of . proof systems for regular languages with strongly connected NFA’s.
12#
發(fā)表于 2025-3-23 16:44:24 | 只看該作者
The Complexity of the Cover Polynomials for Planar Graphs of Bounded Degrees for planar DAGs of bounded degree. For particular subclasses of planar graphs of bounded degree and for variants thereof, we also provide algorithms that allow for polynomial-time evaluation of the cover polynomials at certain new points by utilizing Valiant’s holographic framework.
13#
發(fā)表于 2025-3-23 21:47:43 | 只看該作者
14#
發(fā)表于 2025-3-24 01:05:40 | 只看該作者
15#
發(fā)表于 2025-3-24 04:37:58 | 只看該作者
16#
發(fā)表于 2025-3-24 09:31:20 | 只看該作者
17#
發(fā)表于 2025-3-24 13:25:13 | 只看該作者
18#
發(fā)表于 2025-3-24 17:56:13 | 只看該作者
19#
發(fā)表于 2025-3-24 21:40:59 | 只看該作者
Solving Analytic Differential Equations in Polynomial Time over Unbounded Domainsover . domains of ?. and ?., under the Computable Analysis setting. We show that the solution can be computed in polynomial time over its maximal interval of definition, provided it satisfies a very generous bound on its growth, and that the function admits an analytic extension to the complex plane.
20#
發(fā)表于 2025-3-25 01:57:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 22:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潢川县| 财经| 黑龙江省| 通州区| 凌海市| 大姚县| 南川市| 阿克陶县| 东乌珠穆沁旗| 巫溪县| 正镶白旗| 大连市| 巴青县| 浪卡子县| 庆云县| 仁布县| 鄂尔多斯市| 蓬溪县| 中江县| 万盛区| 揭西县| 若尔盖县| 江城| 出国| 昌黎县| 宁武县| 阜新市| 泽库县| 城固县| 丰镇市| 岚皋县| 砀山县| 南通市| 成安县| 合川市| 长治县| 景谷| 高唐县| 南充市| 张家川| 镇江市|