找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Foundations of Big Data Analytics; Vladimir Shikhman,David Müller Textbook 2021 Springer-Verlag GmbH Germany, part of Springe

[復(fù)制鏈接]
查看: 26589|回復(fù): 43
樓主
發(fā)表于 2025-3-21 19:58:44 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Mathematical Foundations of Big Data Analytics
編輯Vladimir Shikhman,David Müller
視頻videohttp://file.papertrans.cn/627/626107/626107.mp4
概述Covers all relevant techniques commonly used in Big Data Analytics?.Standardized structure and size of the chapters: motivation, results, case-study, exercises.Recommended and developed for university
圖書封面Titlebook: Mathematical Foundations of Big Data Analytics;  Vladimir Shikhman,David Müller Textbook 2021 Springer-Verlag GmbH Germany, part of Springe
描述In this textbook, basic mathematical models used in Big Data Analytics are presented and application-oriented references to relevant practical issues are made. Necessary mathematical tools are examined and applied to current problems of data analysis, such as brand loyalty, portfolio selection, credit investigation, quality control, product clustering, asset pricing etc. – mainly in an economic context. In addition, we discuss interdisciplinary applications to biology, linguistics, sociology, electrical engineering, computer science and artificial intelligence. For the models, we make use of a wide range of mathematics – from basic disciplines of numerical linear algebra, statistics and optimization to more specialized game, graph and even complexity theories. By doing so, we cover all relevant techniques commonly used in Big Data Analytics..Each chapter starts with a concrete practical problem whose primary aim is to motivate the study of a particular Big Data Analytics technique. Next, mathematical results follow – including important definitions, auxiliary statements and conclusions arising. Case-studies help to deepen the acquired knowledge by applying it in an interdisciplinar
出版日期Textbook 2021
關(guān)鍵詞Mathematical Models for Big Data Analytics; Analysis of Big Data; Economic Applications of Big Data An
版次1
doihttps://doi.org/10.1007/978-3-662-62521-7
isbn_softcover978-3-662-62520-0
isbn_ebook978-3-662-62521-7
copyrightSpringer-Verlag GmbH Germany, part of Springer Nature 2021
The information of publication is updating

書目名稱Mathematical Foundations of Big Data Analytics影響因子(影響力)




書目名稱Mathematical Foundations of Big Data Analytics影響因子(影響力)學(xué)科排名




書目名稱Mathematical Foundations of Big Data Analytics網(wǎng)絡(luò)公開度




書目名稱Mathematical Foundations of Big Data Analytics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Mathematical Foundations of Big Data Analytics被引頻次




書目名稱Mathematical Foundations of Big Data Analytics被引頻次學(xué)科排名




書目名稱Mathematical Foundations of Big Data Analytics年度引用




書目名稱Mathematical Foundations of Big Data Analytics年度引用學(xué)科排名




書目名稱Mathematical Foundations of Big Data Analytics讀者反饋




書目名稱Mathematical Foundations of Big Data Analytics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:40:07 | 只看該作者
nique. Next, mathematical results follow – including important definitions, auxiliary statements and conclusions arising. Case-studies help to deepen the acquired knowledge by applying it in an interdisciplinar978-3-662-62520-0978-3-662-62521-7
板凳
發(fā)表于 2025-3-22 03:31:43 | 只看該作者
Ranking,e, to the definition of a ranking as the leading . of a corresponding stochastic matrix. In this chapter we explain the mathematics behind ranking. First, we focus on the existence of a ranking by using the duality of linear programming. This leads to . from linear algebra. Second, a dynamic procedu
地板
發(fā)表于 2025-3-22 04:42:19 | 只看該作者
5#
發(fā)表于 2025-3-22 08:43:52 | 只看該作者
Recommendation Systems, and the . algorithm is described. The model-based approach uses a linear-algebraic technique of .. Singular value decomposition allows to reveal hidden patterns of users’ choice behavior. After imposing a low-rank model on the latter, the prediction becomes optimization-driven. For solving the corr
6#
發(fā)表于 2025-3-22 16:06:39 | 只看該作者
Classification,of linear classifiers are discussed. First, we introduce the statistically motivated .. The latter maximizes the sample variance between the classes and minimizes the variance of data within the classes. The computation of Fisher’s discriminant leads to a nicely structured eigenvalue problem. Second
7#
發(fā)表于 2025-3-22 21:01:11 | 只看該作者
Clustering,enters are recalculated by minimizing the dissimilarity within the clusters. The .-means algorithm is specified for the Euclidean setup, where centers turn out to be clusters’ sample means. Additionally, we discuss the modifications of .-means with respect to other dissimilarity measures. They inclu
8#
發(fā)表于 2025-3-22 21:27:37 | 只看該作者
Linear Regression,ied whether some exogenous variables may have no linear relationship with the endogenous variable at all, or identified which subsets of exogenous variables may contain redundant information about the endogenous variable. In this chapter, we discuss the meanwhile classical technique of . for linear
9#
發(fā)表于 2025-3-23 04:47:42 | 只看該作者
10#
發(fā)表于 2025-3-23 07:27:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 10:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永州市| 井陉县| 富裕县| 兰考县| 龙川县| 玉田县| 额尔古纳市| 南雄市| 泾川县| 昌图县| 嘉荫县| 吉安市| 芜湖市| 洪洞县| 榕江县| 阳高县| 天峻县| 剑河县| 蛟河市| 南投市| 台山市| 石楼县| 陇南市| 扶绥县| 池州市| 西乌珠穆沁旗| 尉氏县| 即墨市| 通渭县| 南宫市| 雷波县| 防城港市| 岑巩县| 兴安县| 泗阳县| 襄垣县| 顺义区| 大同市| 永年县| 宁都县| 佳木斯市|