找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Fluid Dynamics, Present and Future; Tokyo, Japan, Novemb Yoshihiro Shibata,Yukihito Suzuki Conference proceedings 2016 Springe

[復(fù)制鏈接]
樓主: Cleveland
21#
發(fā)表于 2025-3-25 04:38:58 | 只看該作者
Nonconvergence of the Capillary Stress Functional for Solutions of the Convective Cahn-Hilliard Equas the solution to a convective Cahn-Hilliard equation with mobility constant converging to 0 too fast as .. In that case the motion of the interface is dominated by the convection term . of the convective Cahn-Hilliard equation.
22#
發(fā)表于 2025-3-25 10:58:07 | 只看該作者
23#
發(fā)表于 2025-3-25 14:56:33 | 只看該作者
24#
發(fā)表于 2025-3-25 19:12:41 | 只看該作者
25#
發(fā)表于 2025-3-25 22:59:28 | 只看該作者
26#
發(fā)表于 2025-3-26 04:08:15 | 只看該作者
Mathematical and Numerical Analysis of the Rayleigh-Plesset and the Keller Equations order widely used for describing motions of a spherically symmetric single bubble. We show that these equations admit structures of the Hamiltonian system with respect to a physically reasonable energy function perturbed by dissipation and obtain the asymptotic behavior of the solutions. Making use
27#
發(fā)表于 2025-3-26 05:08:18 | 只看該作者
On the Amplitude Equation of Approximate Surface Waves on the Plasma-Vacuum Interface consider the equations of incompressible magnetohydrodynamics, while in vacuum the magnetic and electric fields are governed by the Maxwell equations. A surface wave propagate along the plasma-vacuum interface, when it is linearly weakly stable. Following the approach of Alì and Hunter, we measure
28#
發(fā)表于 2025-3-26 12:28:51 | 只看該作者
29#
發(fā)表于 2025-3-26 16:20:40 | 只看該作者
On the Solvability of Free Boundary Problem for Viscous Compressible Fluids in an Infinite Time Intele surface. We prove that this problem is uniquely solvable in the anisotropic Sobolev spaces, and under certain assumptions the solution is defined for . and decays exponentially as .. In the proof we use the estimate of “modified energy” obtained by M. Padula.
30#
發(fā)表于 2025-3-26 18:58:54 | 只看該作者
Classical Solvability of the Two-Phase Radial Viscous Fingering Problem in a Hele-Shaw Cellnlike the Stefan problem for heat equations Hele-Shaw problem is of hydrodynamic type. In this paper the classical solvability of two-phase Hele-Shaw problem with radial geometry is established by applying the same method as for the Stefan problem and justifying the vanishing the coefficients of the
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 07:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
竹溪县| 于都县| 兴山县| 会泽县| 克山县| 红河县| 景德镇市| 锦屏县| 岑溪市| 垣曲县| 顺昌县| 陵川县| 英吉沙县| 隆德县| 佛冈县| 和静县| 罗平县| 健康| 灌云县| 天等县| 博野县| 治县。| 崇左市| 同德县| 酉阳| 乡宁县| 清水河县| 陵川县| 香河县| 西林县| 都兰县| 离岛区| 玉田县| 平顺县| 财经| 海林市| 昭觉县| 庆元县| 大英县| 大新县| 乐陵市|