找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Financial Economics; A Basic Introduction Igor V. Evstigneev,Thorsten Hens,Klaus Reiner Sche Textbook 2015 The Editor(s) (if a

[復制鏈接]
樓主: Lensometer
31#
發(fā)表于 2025-3-26 22:52:17 | 只看該作者
32#
發(fā)表于 2025-3-27 02:34:00 | 只看該作者
33#
發(fā)表于 2025-3-27 05:33:55 | 只看該作者
Portfolio Selection: Introductory CommentsThe chapter introduces fundamental notions related to asset prices, asset returns and investors’ portfolios. It describes the two-period model of an asset market, the basic framework for Part I of the book. It contains definitions of key mathematical notions used in the book.
34#
發(fā)表于 2025-3-27 11:01:11 | 只看該作者
35#
發(fā)表于 2025-3-27 16:43:43 | 只看該作者
978-3-319-36249-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
36#
發(fā)表于 2025-3-27 18:33:17 | 只看該作者
Mathematical Financial Economics978-3-319-16571-4Series ISSN 2192-4333 Series E-ISSN 2192-4341
37#
發(fā)表于 2025-3-28 00:58:47 | 只看該作者
https://doi.org/10.1007/978-3-319-16571-4Arbitrage pricing; Capital growth theory; Evolutionary finance; Financial economics; Mathematical financ
38#
發(fā)表于 2025-3-28 02:46:13 | 只看該作者
Properties of Efficient Portfoliosistics of these portfolios can be expressed. It is shown how to give a complete description in terms of A, B, C and D of the efficient frontier in the $?sigma$-$m$ plane and in the $?sigma?{2}$-$m$ plane. A key result is a two-fund theorem, which is formulated and proved. The chapter concludes with a geometric illustration of the two-fund theorem.
39#
發(fā)表于 2025-3-28 06:35:37 | 只看該作者
The Markowitz Model with a Risk-Free Assetns, and describes the Markowitz optimization problem in this setting. A criterion for portfolio efficiency and an explicit formula for an efficient portfolio with the given risk tolerance are derived and discussed.
40#
發(fā)表于 2025-3-28 11:33:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 16:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
剑川县| 华容县| 长岭县| 鄂托克前旗| 班玛县| 什邡市| 馆陶县| 邻水| 延吉市| 荔波县| 秭归县| 许昌市| 安溪县| 博野县| 广丰县| 九江县| 滨州市| 玛纳斯县| 德格县| 溧水县| 健康| 抚顺市| 桐乡市| 英山县| 宝坻区| 武定县| 宣武区| 临漳县| 鱼台县| 英山县| 徐汇区| 漳平市| 忻城县| 伊川县| 仙居县| 枞阳县| 安溪县| 山阴县| 珲春市| 瓮安县| 宜丰县|