找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Essays in honor of Gian-Carlo Rota; Bruce E. Sagan,Richard P. Stanley Book 1998 Birkh?user 1998 Hilbert space.Hypergeometric

[復(fù)制鏈接]
樓主: 棕櫚等
31#
發(fā)表于 2025-3-26 22:57:40 | 只看該作者
Mathematical Essays in honor of Gian-Carlo Rota978-1-4612-4108-9Series ISSN 0743-1643 Series E-ISSN 2296-505X
32#
發(fā)表于 2025-3-27 02:35:28 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/m/image/626084.jpg
33#
發(fā)表于 2025-3-27 06:07:12 | 只看該作者
34#
發(fā)表于 2025-3-27 10:49:04 | 只看該作者
35#
發(fā)表于 2025-3-27 16:33:44 | 只看該作者
Classification of Trivectors in 6-D Space, in all infinite fields of characteristics other than two or three). In particular, we prove that there is only one invariant. Our work leads to a notable new conjecture on the covariants of supersymmetric tensors.
36#
發(fā)表于 2025-3-27 19:17:38 | 只看該作者
Parameter Augmentation for Basic Hypergeometric Series, I,elop a method of deriving hypergeometric identities by parameter augmentation, which means that a hypergeometric identity with multiple parameters may be derived from its special case obtained by reducing some parameters to zero. Many classical results on basic hypergeometric series easily fall into this framework.
37#
發(fā)表于 2025-3-27 23:09:15 | 只看該作者
Lattice Walks and Primary Decomposition,statistics, and operations research. We begin this introduction with the general formulation. Then we give the simplest interesting example of our theory, followed by a statistical example similar to that which provided our original motivation. Later on we study the primary decompositions corresponding to some natural combinatorial problems.
38#
發(fā)表于 2025-3-28 04:31:33 | 只看該作者
39#
發(fā)表于 2025-3-28 07:32:29 | 只看該作者
40#
發(fā)表于 2025-3-28 10:32:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金乡县| 察哈| 建德市| 大英县| 永清县| 屏南县| 昭平县| 缙云县| 富蕴县| 东台市| 聂拉木县| 泾源县| 来宾市| 延川县| 夏邑县| 商洛市| 德清县| 平江县| 韩城市| 昌平区| 玉山县| 忻城县| 博罗县| 仁怀市| 永宁县| 山阴县| 宝兴县| 玉门市| 油尖旺区| 江都市| 邵阳市| 林州市| 新田县| 中牟县| 泸定县| 信丰县| 龙南县| 镇平县| 古交市| 维西| 搜索|