找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Conversations; Selections from The Robin Wilson,Jeremy Gray Book 2001 Springer Science+Business Media New York 2001 Algebra.A

[復(fù)制鏈接]
樓主: 不友善
21#
發(fā)表于 2025-3-25 06:24:08 | 只看該作者
22#
發(fā)表于 2025-3-25 08:00:39 | 只看該作者
23#
發(fā)表于 2025-3-25 15:43:51 | 只看該作者
An Interview with Michael Atiyahrofessor of Geometry at Oxford (1963–69) and Professor of Mathematics at the Institute for Advanced Study in Princeton (1969–72); he is currently a Royal Society Research Professor of Mathematics at Oxford University. Since this article appeared he has been Master of Trinity College, Cambridge (1990
24#
發(fā)表于 2025-3-25 19:41:20 | 只看該作者
My Collaboration with Julia Robinson The section of his famous address [.] devoted to the tenth problem is so short that it can be cited here in full: 10. DETERMINATION OF THE SOLVABILITY OF A DIOPHANTINE EQUATION Given a Diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: To d
25#
發(fā)表于 2025-3-25 21:50:21 | 只看該作者
C.N. Yang and Contemporary Mathematicsribution to parity non-conservation. Mathematicians, however, know Yang best for the Yang-Mills theory and the Yang-Baxter equation. After Einstein and Dirac, Yang is perhaps the twentieth-century physicist who has had the greatest impact on the development of mathematics. I interviewed Dr. Yang in
26#
發(fā)表于 2025-3-26 01:18:26 | 只看該作者
27#
發(fā)表于 2025-3-26 08:00:27 | 只看該作者
28#
發(fā)表于 2025-3-26 10:52:09 | 只看該作者
Representation Theory of Finite Groups: from Frobenius to Brauer was inspired in part by two largely unrelated developments which occurred earlier in the nineteenth century. The first was the awareness of characters of finite abelian groups and their application by some of the great nineteenth-century number theorists. The second was the emergence of the structu
29#
發(fā)表于 2025-3-26 15:01:34 | 只看該作者
Quaternionic Determinantsd as groups of quaternionic matrices. But, the quaternions not being commutative, we must reconsider some aspects of linear algebra. In particular, it is not clear how to define the determinant of a quaternionic matrix. Over the years, many people have given different definitions. In this article I
30#
發(fā)表于 2025-3-26 20:29:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 12:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹤山市| 潜山县| 文水县| 阳谷县| 昭觉县| 虎林市| 涪陵区| 温宿县| 海南省| 牟定县| 离岛区| 唐海县| 乌兰浩特市| 中宁县| 齐齐哈尔市| 东平县| 通化县| 丹阳市| 铁力市| 台东县| 澎湖县| 博兴县| 昌平区| 万州区| 安达市| 内黄县| 麻栗坡县| 海林市| 恩施市| 温泉县| 若尔盖县| 樟树市| 涿鹿县| 改则县| 彰武县| 湖北省| 克拉玛依市| 扶绥县| 巴塘县| 玉溪市| 香港 |