找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Control Theory for Stochastic Partial Differential Equations; Qi Lü,Xu Zhang Book 2021 Springer Nature Switzerland AG 2021 st

[復(fù)制鏈接]
樓主: fungus
21#
發(fā)表于 2025-3-25 05:24:43 | 只看該作者
Exact Controllability for Stochastic Transport Equations,In this chapter, we are concerned with the exact boundary controllability for stochastic transport equations. By the duality argument, the controllabilityproblem is reduced to a suitable observability estimate for backward stochastic transport equations, and we employ a stochastic version of global Carlemanestimate to derive such an estimate.
22#
發(fā)表于 2025-3-25 09:07:49 | 只看該作者
23#
發(fā)表于 2025-3-25 14:48:45 | 只看該作者
Some Preliminaries in Stochastic Calculus,is book. Especially, we collect the most relevant preliminaries for studying control problems in stochastic distributed parameter systems. Also, we will provide some unified notations (which may differ from one paper/book to another) to be used in later chapters.
24#
發(fā)表于 2025-3-25 17:55:22 | 只看該作者
Backward Stochastic Evolution Equations, of control problems for stochastic distributed parameter systems. In the case of natural filtration, by means of the Martingale Representation Theorem, these equations are proved to be well-posed in the sense of mild solutions; while for the general filtration, using our stochastic transposition method, we also establish their well-posedness.
25#
發(fā)表于 2025-3-25 22:20:33 | 只看該作者
26#
發(fā)表于 2025-3-26 02:49:36 | 只看該作者
,Exact Controllability for Stochastic Schr?dinger Equations,control and the other is an internal control acting everywhere in the diffusion term. Based on the duality argument, we solve this controllability problemby employing the global Carleman estimate to derive a suitable observability estimate for the dual equation.
27#
發(fā)表于 2025-3-26 07:30:21 | 只看該作者
https://doi.org/10.1007/978-3-030-82331-3stochastic evolution equation; control theory; controllability; observability; optimal control; global Ca
28#
發(fā)表于 2025-3-26 09:56:30 | 只看該作者
978-3-030-82333-7Springer Nature Switzerland AG 2021
29#
發(fā)表于 2025-3-26 12:37:25 | 只看該作者
Mathematical Control Theory for Stochastic Partial Differential Equations978-3-030-82331-3Series ISSN 2199-3130 Series E-ISSN 2199-3149
30#
發(fā)表于 2025-3-26 18:01:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 20:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
十堰市| 凉城县| 嘉善县| 南充市| 连南| 梁平县| 石棉县| 哈巴河县| 禹州市| 江永县| 龙南县| 连山| 南漳县| 河南省| 施甸县| 舞钢市| 云阳县| 深州市| 岳普湖县| 新绛县| 建德市| 嘉兴市| 江阴市| 广灵县| 临夏市| 右玉县| 泾源县| 河津市| 莱西市| 周口市| 乐安县| 留坝县| 遵义市| 亳州市| 团风县| 诸暨市| 佛坪县| 巴南区| 永新县| 五峰| 罗定市|