找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Control Theory and Finance; Andrey Sarychev,Albert Shiryaev,Maria do Rosário G Book 2008 Springer-Verlag Berlin Heidelberg 20

[復(fù)制鏈接]
樓主: 推翻
51#
發(fā)表于 2025-3-30 12:10:25 | 只看該作者
52#
發(fā)表于 2025-3-30 14:32:03 | 只看該作者
Instalment Options: A Closed-Form Solution and the Limiting Case, as they allow the holder to prolong a Vanilla Call or Put option by paying instalments of a discrete payment plan. We derive a closed-form solution to the value of such an option in the Black-Scholes model and prove that the limiting case of an Instalment option with a continuous payment plan is eq
53#
發(fā)表于 2025-3-30 20:35:36 | 只看該作者
Existence and Lipschitzian Regularity for Relaxed Minimizers, problems of optimal control (Theorem 1); to derive conditions for Lipschitzian regularity of trajectories corresponding to relaxed minimizers (Theorem 3). In passing, elaborating on the approach used in [10], we provide a condition for Lipschitzian regularity of non relaxed minimizers (Theorem 2).
54#
發(fā)表于 2025-3-30 21:51:27 | 只看該作者
55#
發(fā)表于 2025-3-31 03:14:54 | 只看該作者
56#
發(fā)表于 2025-3-31 07:23:46 | 只看該作者
An Approximate Solution for Optimal Portfolio in Incomplete Markets,an approximate solution for the optimal portfolio. We take into account a set of assets and a set of state variables, all of them described by general diffusion processes. Finally, we supply an easy test for checking the goodness of the approximate result.
57#
發(fā)表于 2025-3-31 12:03:17 | 只看該作者
58#
發(fā)表于 2025-3-31 14:13:57 | 只看該作者
Observability of Nonlinear Control Systems on Time Scales - Sufficient Conditions,f operators which in the continuous-time case coincides with Lie derivatives associated to the given system. Then it is shown that set of functions generated by this operator distinguishes states that are distinguishable. The proved sufficient condition for observability is classical, but it works n
59#
發(fā)表于 2025-3-31 20:22:11 | 只看該作者
60#
發(fā)表于 2025-4-1 01:22:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉水县| 米脂县| 石泉县| 沂水县| 稻城县| 当雄县| 从江县| 安阳县| 巴南区| 合川市| 观塘区| 枣阳市| 东兰县| 双鸭山市| 滨海县| 临潭县| 崇仁县| 西贡区| 梅河口市| 新平| 伊川县| 崇文区| 八宿县| 屏东县| 黄梅县| 陇西县| 嘉义市| 安吉县| 永善县| 壶关县| 崇义县| 桑植县| 皮山县| 肥乡县| 铜山县| 巩义市| 揭阳市| 纳雍县| 和田县| 江孜县| 渝中区|