找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Control Theory; An Introduction Jerzy Zabczyk Textbook 2020Latest edition Springer Nature Switzerland AG 2020 Mathematical Con

[復制鏈接]
樓主: VEER
31#
發(fā)表于 2025-3-27 00:50:26 | 只看該作者
Controllability their adjoint operators. The abstract results lead to specific descriptions of approximately controllable and exactly controllable systems which are applicable to parabolic and hyperbolic equations. Formulae for controls which transfer one state to another are given as well.
32#
發(fā)表于 2025-3-27 01:47:11 | 只看該作者
Stability and stabilizabilityIn this chapter stable linear systems are characterized in terms of associated characteristic polynomials and Lyapunov equations. A proof of the Routh theorem on stable polynomials is given as well as a complete description of completely stabilizable systems. Luenberger’s observer is introduced and used to illustrate the concept of detectability.
33#
發(fā)表于 2025-3-27 06:50:35 | 只看該作者
34#
發(fā)表于 2025-3-27 09:49:42 | 只看該作者
35#
發(fā)表于 2025-3-27 17:16:13 | 只看該作者
Realization theoryThis chapter is devoted to the input–output map generated by a linear control system. The input–output map is characterized in terms of the impulse response function and the transfer function.
36#
發(fā)表于 2025-3-27 20:00:10 | 只看該作者
37#
發(fā)表于 2025-3-27 22:43:29 | 只看該作者
Stability and stabilizabilityThree types of stability and stabilizability are studied: exponential, asymptotic and Lyapunov. Discussions are based on linearization and Lyapunov’s function approaches. When analysing a relationship between controllability and stabilizability topological methods are used.
38#
發(fā)表于 2025-3-28 04:55:53 | 只看該作者
39#
發(fā)表于 2025-3-28 07:48:28 | 只看該作者
40#
發(fā)表于 2025-3-28 13:40:30 | 只看該作者
Dynamic programming for impulse control???The dynamic programming approach is applied to impulse control problems. The existence of optimal impulse strategy is deduced from general results on fixed points for monotonic and concave transformations.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 20:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
望都县| 阿合奇县| 南丰县| 攀枝花市| 怀宁县| 邵东县| 应城市| 林甸县| 榆林市| 孝义市| 平罗县| 辽中县| 三门峡市| 贡嘎县| 化德县| 弋阳县| 百色市| 敦煌市| 澎湖县| 怀宁县| 莲花县| 竹山县| 分宜县| 南部县| 上思县| 雅安市| 久治县| 曲麻莱县| 镇巴县| 砚山县| 辉南县| 太仆寺旗| 文成县| 建德市| 嫩江县| 喀喇沁旗| 朝阳区| 门源| 英超| 甘肃省| 吐鲁番市|